Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
\(\Leftrightarrow\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
TH1 : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Leftrightarrow M=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1}\)
TH2 : \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}M=\frac{2c.2b.2a}{abc}=8}\)
Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)
Vậy.................................
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
Lời giải:
$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$
$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$
$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$
$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$
$\Rightarrow a+b+c=0$ hoặc $a=b=c$
Nếu $a+b+c=0$ thì:
$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:
$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Suy ra:
\(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)
\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)
Thay \(a=\frac{1}{2}\times\left(b+c\right)\); \(b=\frac{1}{2}\times\left(a+c\right)\); \(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:
\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)
\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)
\(=2+2+2=6\)
Vậy giá trị của P là 6
Th1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào b/t A. ta có:
\(A=\frac{aaa}{\left(a+a\right).\left(a+a\right).\left(a+a\right)}=\frac{aaa}{2a.2a.2a}=\frac{aaa}{8aaa}=\frac{1}{8}\)
th2: a+b+c = 0
=> a+b=-c
b+c=-a
c+a=-b
thay a+b=-c, b+c=-a, c+a=-b vào b/t A ta có:
\(A=\frac{abc}{\left(-c\right).\left(-a\right).\left(-b\right)}=-1\)