\(\dfrac{a}{b+c}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :

\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

Cộng 3 vế với nhau , ta có :

\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)

17 tháng 2 2019

Ta có :

\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);

\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);

\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)

Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b

\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)

\(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

Tương tự :

\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Kết hợp (*) với (**)

=> ĐPCM

8 tháng 5 2017

Theo BĐT Schur thì ta có:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

Vậy thì giờ chỉ theo AM-GM là xong

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}=3\)

15 tháng 5 2017

\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (do a > 0)

Tương tự: \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Từ 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta sẽ chứng minh:

  \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)  

Thât vậy, do a, b, c là các cạnh của tam giác nên bất đẳng thức trên tương đương với

   \(a\left(a+b+c\right)< 2a\left(b+c\right)\)

\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)

\(\Leftrightarrow a\left(a-b-c\right)< 0\)

Bất đẳng thức này đúng vì a>0 và a < b + c (vì trong tam giác, tổng hai cạnh lớn hơn cạnh thứ ba).

Vậy ta có: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Vậy bài toán đã được chứng minh.

15 tháng 5 2017

Mình chỉ chứng minh được bé hơn 2 thôi nhe

Theo bất đẳng thức tam giác thì b+c>a => \(\frac{a}{b+c}< \frac{a}{a}\left(=1\right)\)

Tương tự ta cũng có 

\(\frac{b}{a+c}< 1\)

\(\frac{c}{a+b}< 1\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 3\)

28 tháng 3 2018

\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)

\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge3+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2\left(b+c-a\right)}+\dfrac{a+b+c}{2\left(a+c-b\right)}+\dfrac{a+b+c}{2\left(a+b-c\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{9}{2}\)

Lại có:\(\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{a+b+c}{2}\cdot\dfrac{9}{b+c-a+a+c-b+a+b-c}\ge\dfrac{9}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Có nhiều cách để giải quyết bài toán này. Đây là một cách đơn thuần sử dụng BĐT Cô-si.

Đặt \(\left\{\begin{matrix} b+c-a=x\\ a+c-b=y\\ a+b-c=z\end{matrix}\right.\) (\(x,y,z>0\) do $a,b,c$ là ba cạnh tam giác)

\(\Rightarrow (a,b,c)=\left(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2}\right)\)

BĐT cần chứng minh tương đương với:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3(*)\)

Áp dụng BĐT Cô-si cho 3 số:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(z+x)}{8xyz}}\)

Tiếp tục Cô-si: \((x+y)(y+z)(z+x)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow \frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{8xyz}{8xyz}}=3\)

Do đó $(*)$ được chứng minh.

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)

Bài 1:Cho biểu thức \(A=\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\) a)Tìm giá trị của x để giá trị của biểu thức A được xác định. b)Tìm giá trị của x để A=0 c)Tìm giá trị của x để A nhận giá trị dương. Bài 2:Có 270 học sinh khối 7 và khối 8 tham gia lao động trồng cây.Tính số học sinh tham gia lao động trồng cây.Tính số học sinh tham gia lao động của mỗi...
Đọc tiếp

Bài 1:Cho biểu thức \(A=\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

a)Tìm giá trị của x để giá trị của biểu thức A được xác định.

b)Tìm giá trị của x để A=0

c)Tìm giá trị của x để A nhận giá trị dương.

Bài 2:Có 270 học sinh khối 7 và khối 8 tham gia lao động trồng cây.Tính số học sinh tham gia lao động trồng cây.Tính số học sinh tham gia lao động của mỗi khối ,biết rằng \(\dfrac{3}{4}\) số học sinh khối 7 bằng 60% số học sinh khối 8.

Bài 3:Cho tam giác vuông ABC(\(\widehat{A}=90^0\)) có AB=30cm,AC=40cm,AE= là đường cao và BD là phân giác của tam giác.Gọi F là giao điểm của AE và BD.

a)Chứng minh tam giác ABC đồng dạng tam giác EBA.

b)Chứng minh \(BD\times EF=BF\times AD.\)

c)Tính AD.

d)Chứng minh \(\dfrac{FA}{FE}=\dfrac{DC}{DA}\)

Bài 4:Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Chứng minh:\(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

1
28 tháng 4 2017

4

ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)

Ta có: \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3}+3\times\dfrac{1}{x^2}\times\dfrac{1}{y}+3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{y^3}-3\times\dfrac{1}{x^2}\times\dfrac{1}{y}-3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{z^3}\) \(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{-1}{z}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{-1}{z}\right)+\dfrac{1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-\dfrac{1}{z^3}+3\times\dfrac{1}{xyz}+\dfrac{1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)(ĐPCM)

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
4 tháng 8 2019

 TL:

\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)

17 tháng 10 2021

Đáp án: 

Giải thích các bước giải:

a, phân tích thành nhân tử

M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
    = (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
    = [(a-b)^2 - c^2][(a+b)^2 - c^2]
    = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

30 tháng 4 2017

Bạn viết đầu bài đầy đủ hơn nhé!

30 tháng 4 2017

Xin lỗi mình viết nhầm!

26 tháng 4 2018

1.

Cạnh huyền là: \(\sqrt{2a^2}\)

=> Chu vi đáy = \(2a+\sqrt{2a^2}\)

=> Sxq = \(2a\left(2a+\sqrt{2a^2}\right)\)

=> Stp = \(a^2+2a\left(2a+\sqrt{2a^2}\right)\)(đvdt)

p/s: Hình như là k rút gọn đc

2. Đề sai k ạ ? Tui lm k ra = 2, nếu mà đề đúng thì tui 0 biet lam

28 tháng 4 2018

đề đúng r ạ

Bn thử lại giùm mk