K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(\left(4a^2b^2\right)-\left(a^2+b^2-c^2\right)^2>0\\ \Rightarrow\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2>0\\ \Rightarrow\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)>0\\ \Rightarrow\left(c^2-\left(a^2-2ab+b^2\right)\right)\left\{\left(a+b\right)^2-c^2\right\}>0\\ \Rightarrow\left(c^2-\left(a-b\right)^2\right)\left(a+b-c\right)\left(a+b+c\right)>0\\ \Rightarrow\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)

Luoonn đúng => đpcm

24 tháng 12 2015

Áp dụng bất đẳng thức tam giác có a+b>c

                                                            <=>ac+bc > c2  (c>0)

<=>a+b
   Tương tự có:ab+cb>b2    ac+ab >a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)

đúng rồi

19 tháng 2 2016

15/25

 

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

ab<c<=>a2+b22ab<c2a−b<c<=>a2+b2−2ab<c2

bc<a<=>b2+c22bc<a2b−c<a<=>b2+c2−2bc<a2

ac<b<=>a2+c22ac<b2a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

NV
24 tháng 4 2019

Có vẻ bạn chép sai đề, do đề bài cho biết tam giác có 1 góc có số đo cố định ko phụ thuộc \(x\) nên ta cho x một giá trị bất kì rồi sử dụng định lý hàm cos để tính 3 góc, giả sử cho \(x=2\Rightarrow\left\{{}\begin{matrix}a=7\\b=5\\c=5\end{matrix}\right.\)

Tam giác này cân tại A nên chỉ cần tính góc A và B

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{50}\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{7}{10}\)

Không có đáp án nào cả

1 tháng 5 2018

\(\dfrac{\tan A}{\tan B}=\dfrac{\sin A}{\cos A}.\dfrac{\cos B}{\sin B}=\dfrac{\dfrac{a.\sin B}{b}\left(\dfrac{a^2+c^2-b^2}{2ac}\right)}{\dfrac{b^2+c^2-a^2}{2bc}.\sin B}=\dfrac{\dfrac{\sin B.\left(a^2+c^2-b^2\right)}{2bc}}{\dfrac{\sin B.\left(b^2+c^2-a^2\right)}{2bc}}=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}\)

21 tháng 8 2016

Ta có

\(a< b+c\left(bđt\Delta\right)\)

\(\Rightarrow2a< a+b+c\)

\(\Rightarrow2a< 2\)

\(\Rightarrow a< 1\)

\(\Rightarrow-a>-1\)

\(\Rightarrow1-a>0\)

Tương tự với b và c

\(\Rightarrow\begin{cases}1-b>0\\1-c>0\end{cases}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

\(\Rightarrow1-2+ab+bc+ca>abc\)

\(\Rightarrow-1+ab+bc+ca>abc\)

\(\Rightarrow-2+2ab+2bc+2ca>2abc\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca-2>2acb+a^2+b^2+c^2\)

Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2abc+a^2+b^2+c^2< 2\)

đpcm

 

 

21 tháng 8 2016
Giả sử a>=b>=c. Ta có:
a<b+c => 2a<a+b+c=2=>a<1=> b<1,c<1
=> (1-a)(1-b)(1-c)>0. Rút gọn ta được
ab+bc+ca >1+abc
Ta lại có: (a+b+)^2 =a^2+b^2+c^2 +2(ab+bc+ca)
=> 4= a^2+b^2+c^2+2(ab+bc+ca)
=> 4> a^2+b^2+c^2+2(1+abc)=> 4>a^2+b^2+c^2+2+2abc
=> a^2+b^2_c^2+2abc<2