K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Theo bất đẳng thức tam giác:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)

Cộng các bất đẳng thức lại với nhau có điều cần CM

19 tháng 8 2016

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

30 tháng 3 2017

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc                                    

6 tháng 1 2017

a=12 b=1 c=4

k đi

19 tháng 3 2017

Vì a; b; c là độ dài 3 cạnh của 1 tam giác nên ta có : \(a+b>c;a+c>b;b+c>a\)

\(\Rightarrow c\left(a+b\right)>c.c\Rightarrow ac+bc>c^2\)

\(\Rightarrow b\left(a+c\right)>b.b\Rightarrow ab+bc>b^2\)

\(\Rightarrow a\left(b+c\right)>a.a\Rightarrow ab+ac>a^2\)

Cộng vế với vế ta được :

\(\left(ac+bc\right)+\left(ab+bc\right)+\left(ab+ac\right)>a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)>a^2+b^2+c^2\) (đpcm)

19 tháng 3 2017

Nhân 2 vế với a>0 ta có

ab+ac>a^2 (1)

bc+ba>b^2 (2)

ac+cb>c^2 (3)

Cộng hai vế của (1) , (2) , (3) ta được 2(ab+bc+ca)>a^2+b^2+c^2 ( đpcm)