K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

mình cm cuối cùng ra 1/2(a+b-c)((a-b)^2+(a+c)^2+(b+c)^2)>0(vìa,b,c là ba cạnh của tam giác)

18 tháng 7 2015

A=4a^2b^2-(a^2+b^2-c^2)^2

=(2ab)^2-(a^2+b^2-c^2)^2

=(a^2+b^2-c^2+2ab)[(2ab-a^2-b^2+c^2)]

=[(a+b)^2-c^2]{[-[(a+b)^2-c^2]}

=-[(a+b)^2-c^2)]^2

Theo bđt tam giác ta có a+b>c=>(a+b)^2-c^2>0 => -[(a+b)^2-c^2]<0. Vậy a<0

7 tháng 7 2017

thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được

(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0

nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0

mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0

vậy a^2+b^2+c^2 -ab-bc-bc-ca=0

đặt đa thức đó bằng A

A=0 nên 2xA=0

phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0

nên a=b=c vậy là tam giác đều 

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.

$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

$\Rightarrow ABC$ là tam giác đều.

2 tháng 10 2019

dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:

a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.

dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!

2 tháng 10 2019

bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)

Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!

10 tháng 10 2017

>0 hay>2 vậy bạn?

10 tháng 10 2017

>0 bạn nhé

2 tháng 2 2016

a+b+c => a+b= -c

=> (a+b)= (-c)2

=> a3+b3+3ab(a+b) = -c2

=> a3+b3+c3 = -3ab(a+b)

=> a2+b2+c= -3ab(-c) = 3abc

a)Áp dụng bđt cô si Ta có : \(x+y\ge2\sqrt{xy}\)

                 \(y+z\ge2\sqrt{yz}\)

               \(x+z\ge2\sqrt{xz}\)

Nên : \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{xy.yz.xz}=8\sqrt{x^2y^2z^2}=8xyz\)