\(\frac{2}{9}\le a^3+b^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)

              \(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)

nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)

vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)

tương tự với mấy cái kia nhân vaò và ta có 

\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)

=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)

=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)

=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4

B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)

=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)

=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=> \(ab+bc+ca-abc\le\frac{7}{27}\)

=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)

26 tháng 9 2017

Ta có a+b+c=1;a;b;c>0 nên

P=a3+b3+c3+3abc

=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc

=1-3abc-3∑ab(a+b)

=1-3abc-3∑ab(1-c)

=1-3(ab+bc+ca)+6abc

Vì a;b;c là 3 cạnh của một tam giác nên

b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1

Nên (2a-1)(2b-1)(2c-1)<0

<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0

=>4[ab+bc+ca-2abc]>1

=>P<1/4

Ta có:

(a+b-c)(b+c-a)(c+a-b)=

\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc

=>(1-2a)(1-2b)(1-2c)≤abc

=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)

Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

trời mãi ms xong

19 tháng 3 2019

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

19 tháng 3 2019

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

30 tháng 8 2017

Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)

Đặt \(x=b+c-a>0\)

      \(y=a+c-b>0\)

     \(z=a+b-c>0\)

\(\Rightarrow a=\frac{"y+z"}{2}\)

\(\Rightarrow b=\frac{"x+z"}{2}\)

\(\Rightarrow c=\frac{"x+y"}{2}\)

\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)

\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)

\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)

Áp dụng công thức bdt Cauchy cho 2 số :

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng 3 bdt trên, suy ra :

\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"

P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé

20 tháng 5 2018

Do a, b, c là 3 cạnh của tam giác ABC nên a, b, c đều dương. Do đó cả 2 vế đều dương.

Lập phương mỗi vế, ta được phương trình mới tương đương với phương trình đã cho:

\(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 8\cdot4=32\left(1\right)\)

Ta có \(\frac{a^3}{b^3+c^3}< \frac{2a^3}{a^3+b^3+c^3}\);\(\frac{b^3}{a^3+c^3}< \frac{2b^3}{a^3+b^3+c^3}\)và \(\frac{c^3}{a^3+b^3}< \frac{2c^3}{a^3+b^3+c^3}\)

Do đó \(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 2< 32\)

Vì vậy bất đẳng thức (1) là đúng, nên bất đẳng thức đã cho là đúng