K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2021

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

14 tháng 1 2021

Mình dùng định lí cos vào có được ko ạ

AH
Akai Haruma
Giáo viên
15 tháng 2 2017

Lời giải:

Áp dụng bđt AM-GM:

\(a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2\geq 2(ab+b+1)\)

\(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\). Tương tự với các phân thức còn lại:

\(\Rightarrow 2\text{VT}\leq \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=A\)

Dựa vào đk \(abc=1\) dễ thấy \(A=1\).

Cách CM:

\(A=\frac{c}{1+bc+c}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{c+1}{bc+c+1}+\frac{bc}{c+1+bc}=1\) (đpcm)

\(\Rightarrow \text{VT}\leq \frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=c=1\)

21 tháng 8 2016

Ta có

\(a< b+c\left(bđt\Delta\right)\)

\(\Rightarrow2a< a+b+c\)

\(\Rightarrow2a< 2\)

\(\Rightarrow a< 1\)

\(\Rightarrow-a>-1\)

\(\Rightarrow1-a>0\)

Tương tự với b và c

\(\Rightarrow\begin{cases}1-b>0\\1-c>0\end{cases}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

\(\Rightarrow1-2+ab+bc+ca>abc\)

\(\Rightarrow-1+ab+bc+ca>abc\)

\(\Rightarrow-2+2ab+2bc+2ca>2abc\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca-2>2acb+a^2+b^2+c^2\)

Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2abc+a^2+b^2+c^2< 2\)

đpcm

 

 

21 tháng 8 2016
Giả sử a>=b>=c. Ta có:
a<b+c => 2a<a+b+c=2=>a<1=> b<1,c<1
=> (1-a)(1-b)(1-c)>0. Rút gọn ta được
ab+bc+ca >1+abc
Ta lại có: (a+b+)^2 =a^2+b^2+c^2 +2(ab+bc+ca)
=> 4= a^2+b^2+c^2+2(ab+bc+ca)
=> 4> a^2+b^2+c^2+2(1+abc)=> 4>a^2+b^2+c^2+2+2abc
=> a^2+b^2_c^2+2abc<2 
 
3 tháng 8 2017

Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

3 tháng 8 2017

cảm ơn ạ

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

ab<c<=>a2+b22ab<c2a−b<c<=>a2+b2−2ab<c2

bc<a<=>b2+c22bc<a2b−c<a<=>b2+c2−2bc<a2

ac<b<=>a2+c22ac<b2a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
16 tháng 9 2016

a/  (2a+3b)^2 = (2a)^2+2.2a.3b+(3b)^2 = 4a^2+12ab+9b^2

b/   ta nhân đa thức với đa thức thì kết quả sẽ = -9a^2+25

c/   (x^2-3y)^2= (x^2)^2-2.x^2.3y+(3y)^2= x^4-6x^2y+9y^2

                                                     

24 tháng 12 2015

Áp dụng bất đẳng thức tam giác có a+b>c

                                                            <=>ac+bc > c2  (c>0)

<=>a+b
   Tương tự có:ab+cb>b2    ac+ab >a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)

đúng rồi

Câu 1: 

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)

=>\(a^3+b^3+c^3>=3abc\)