Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\dfrac{abc}{a^2+bc}\le\dfrac{abc}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2}\le\dfrac{b+c}{4}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(abc.VT\le\dfrac{2\left(a+b+c\right)}{4}=1\Leftrightarrow VT\le\dfrac{1}{abc}=VP\)
Dấu "="\(\Leftrightarrow a=b=c=\dfrac{2}{3}\)
1) Áp dụng BĐT Cô si
ta có
\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)
\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
vậy ĐPCM
Bài 2
Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)
Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow VT\ge VP\)
\(\Rightarrowđpcm\)
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
1) áp dụng cauchy cho (a+b) và 1/4
\(\frac{\left(a+b\right)+\frac{1}{4}}{2}\ge\sqrt{\left(a+b\right)\cdot\frac{1}{4}}\)
\(\Rightarrow a+b+\frac{1}{4}\ge\sqrt{a+b}\) (Đẳng thức khi \(a+b=\frac{1}{4}\))
2) Ta có: \(\left(x+\frac{1}{2}\right)^2=x^2+x+\frac{1}{4}>x\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>a+b=\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}};\)
với x,y>0 ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\ge\frac{4}{\frac{1}{a}+\frac{1}{b}}\)\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>\frac{4}{\frac{1}{a}+\frac{1}{b}};\)
Tương tự với \(\left(b+c+\frac{1}{2}\right)^2\) và \(\left(c+a+\frac{1}{2}\right)^2\)Ta có:
\(\left(a+b+\frac{1}{2}\right)^2+\left(b+c+\frac{1}{2}\right)^2+\left(c+a+\frac{1}{2}\right)^2\)
\(>4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)\)
Không xảy ra đẳng thức (Nếu vế trái là \(\left(a+b+\frac{1}{4}\right)^2+\left(b+c+\frac{1}{4}\right)^2+\left(c+a+\frac{1}{4}\right)^2\) Thì mới xảy ra đẳng thức.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:
\(\text{VT}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+abc(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}\)
\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{(a+b+c)^2}{ab+bc+ac}\)
\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\sqrt{(ab+bc+ac).\frac{(a+b+c)^2}{ab+bc+ac}}\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2(a+b+c)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c+(a+b+c)\)
\(\geq 6\sqrt[6]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}.a.b.c}+(a+b+c)=6+a+b+c\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{9}{a+b+c}\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Leftrightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}+9\) \(\ge4\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}+12\ge4\left(3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\ge4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\).
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ta có:
\(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\le\dfrac{1}{4}\left(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}\right)\) \(=\dfrac{1}{4}\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\).
Suy ra \(4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\le\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) 9 (đpcm).