Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuyển tập Bất đẳng thức Trần Sĩ Tùng 4 III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki 1. Chứng minh: (ab + cd)2 £ (a2 + c2)(b2 + d2) BĐT Bunhiacopxki 2. Chứng minh: + £sinx cosx 2 3. Cho 3a – 4b = 7. Chứng minh: 3a2 + 4b2 ³ 7. 4. Cho 2a – 3b = 7. Chứng minh: 3a2 + 5b2 ³ 72547. 5. Cho 3a – 5b = 8. Chứng minh: 7a2 + 11b2 ³ 2464137. 6. Cho a + b = 2. Chứng minh: a4 + b4 ³ 2. 7. Cho a + b ³ 1 Chứng minh: + ³2 2 1a b2 Lời giải: I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 (*) (*) Û + +æ ö- ³ç ÷è ø33 3a b a b02 2 Û ( )( )+ - ³23a b a b 08. ĐPCM. 2. Chứng minh: + +£ 2 2a b a b2 2 («) ÷ a + b £ 0 , («) luôn đúng. ÷ a + b > 0 , («) Û + + +- £2 2 2 2a b 2ab a b04 2 Û ( )- ³2a b04 , đúng. Vậy: + +£ 2 2a b a b2 2. 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 Û ( )+ +£3 3 3a b a b8 2 Û ( )( )- - £2 23 b a a b 0 Û ( ) ( )- - + £23 b a a b 0, ĐPCM. 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a («) («) Û + ³ +a a b b a b b a Û ( ) ( )- - - ³a b a a b b 0 Û ( )( )- - ³a b a b 0 Û ( ) ( )- + ³2a b a b 0, ĐPCM. 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b («) Trần Sĩ Tùng Tuyển tập Bất đẳng thức 1 PHẦN I: LUYỆN TẬP CĂN BẢN I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 2. Chứng minh: + +£ 2 2a b a b2 2 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b 6. Chứng minh: ( )+ + + ³ + +2 2 2a b c 3 2 a b c ; a , b , c Î R 7. Chứng minh: ( )+ + + + ³ + + +2 2 2 2 2a b c d e a b c d e 8. Chứng minh: + + ³ + +2 2 2x y z xy yz zx 9. a. Chứng minh: + + + +³ ³a b c ab bc ca; a,b,c 03 3 b. Chứng minh: + + + +æ ö³ ç ÷è ø22 2 2a b c a b c3 3 10. Chứng minh: + + ³ - +22 2ab c ab ac 2bc4 11. Chứng minh: + + ³ + +2 2a b 1 ab a b 12. Chứng minh: + + ³ - +2 2 2x y z 2xy 2xz 2yz 13. Chứng minh: + + + ³ - + +4 4 2 2x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ³ 1 thì: + ³3 3 1a b4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh: a. ab + bc + ca £ a2 + b2 + c2 < 2(ab + bc + ca). b. abc ³ (a + b – c)(a + c – b)(b + c – a) c. 2a2b2 + 2b2c2 + 2c2a2 – a4 – b4 – c4 > 0
Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)
=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)
áp dụng bđt tam giác ta có :
a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2
Xét hiệu: (a2 + b2 - c2)2 - 4a2.b2 = (a2 + b2 - c2 - 2ab). (a2 + b2 - c2 + 2ab) = [(a-b)2 - c2 ]. [(a+b)2 - c2]
= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c) = A
Vì a; b;c là 3 cạnh của tam giá => a+ b > c ; a+ b + c > 0; a < b + c ; a > b - c
=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0
=> A < 0
=> (a2 + b2 - c2)2 < 4a2.b2
bài làm
Xét hiệu:
(a2 + b2 - c2)2 - 4a2.b2 = (a2 + b2 - c2 - 2ab). (a2 + b2 - c2 + 2ab)
= [(a-b)2 - c2 ]. [(a+b)2 - c2]
= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c)
= A
Vì a; b;c là 3 cạnh của tam giá
=> a+ b > c ; a+ b + c > 0; a < b + c ; a > b - c
=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0
=> A < 0
=> (a2 + b2 - c2)2 < 4a2.b2
=>ĐpCm
Hok tốt
Ta có :
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Áp dụng bất đẳng thức tam giác thì ta có :
\(b+c-a>0\)
\(a+c-b>0\)
\(a+b-c>0\)
Hiển nhiên \(a+b+c>0\)
\(A\)là tích của 4 số dương nên \(A>0.\)
Vậy \(A>0.\)
=(2ab−a2−b2+c2)(2ab+a2+b2−c2)
=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]
=[c2−(a−b)2][(a+b)2−c2]
=(b+c−a)(a+c−b)(a+b−c)(a+b+c)
Áp dụng bất đẳng thức tam giác thì ta có :
b+c−a>0
a+c−b>0
a+b−c>0 a+b+c>0
A A là tích của 4 số dương nên A>0.
Vậy A>0.
Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)
mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)
==> \(a-b+c>0\)và \(a+b-c>0\)
Nhân vế theo vế hai biểu thức trên với nhau ta có:
\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm
Nhớ k mik nha
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)
\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)
Vậy A > 0
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2
chuyển qua là được
cảm ơn bạn nhiều nha :)