K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Anh Phương vào link này tham khảo nhé :

Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến

17 tháng 12 2019

Nhớ không nhầm mọi khi đi thi cho đoạn kiểu này và có dấu ''='' ví dụ như :

\(-1\le a,b,c\le2\) thì không cần não nghĩ ngay đến \(a+1,a-2\) (tương tự với b,c)

Trong TH không có dạng cơ bản để áp dụng BĐT thông thường.

14 tháng 11 2018

\(a+b+c\ge0\)

\(\Leftrightarrow a+b+c-a^2-b^2-c^2+6\ge0\)

\(\Leftrightarrow\left(a^2-a-2\right)+\left(b^2-b-2\right)+\left(c^2-c-2\right)\le0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)+\left(b-2\right)\left(b+1\right)+\left(c-2\right)\left(c+1\right)\le0\)(1)

Mà a,b,cE[-1;2]=>\(\left\{{}\begin{matrix}a-2;b-2;c-2\le0\\a+1;b+1;c+1\ge0\end{matrix}\right.\)

=>(1) đúng =>đpcm

9 tháng 12 2019

Do \(a,b,c\in\left[-1;2\right]\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2\le a+2\)

Tương tự:

\(b^2\le b+2;c^2\le c+2\Rightarrow a^2+b^2+c^2\le a+b+c+6\)

\(\Rightarrow a+b+c\ge0\) vì \(a^2+b^2+c^2=6\)

10 tháng 12 2019

Trình bày khác Cool Kid xíu!

\(a+b+c=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)+\Sigma_{cyc}\left(a^2-2\right)\)

\(=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)\ge0\) vì \(a,b,c\in\left[-1;2\right]\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị.

16 tháng 12 2019

Đề bài có thiếu ĐK ko ạ? :vv

NV
22 tháng 10 2019

\(-1\le a;b;c\le2\)

\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)

\(\Leftrightarrow a^2-a-2\le0\)

\(\Rightarrow a^2-2\le a\)

Tương tự ta có: \(b^2-2\le b\) ; \(c^2-2\le c\)

\(\Rightarrow a+b+c\ge a^2+b^2+c^2-6=0\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và cách hoán vị

17 tháng 12 2015

\(a^2+c^2+2ac+2bd=b^2+d^2+2ac+2bd\)

\(\left(a+c\right)^2-\left(b+d\right)^2=2\left(ac-bd\right)\)

\(\left(a+c+b+d\right)\left(a+c-b-d\right)=2\left(ac-bd\right)\)

Nếu ac =bd => a+c =b+d => a+c+b+d = 2(a +c) => là hợp số

Nếu ac -bd khác 0  => ?????????????????

31 tháng 10 2017

Gỉa thiết đã cho có thể viết lại thành

(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1

Từ đó suy ra 0<a/2,b/2,c/2≤1.

Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.

Từ một BĐT cơ bản cosA+cosB+cosC≤3/2

ta có ngay a+b+c≤3

<=> a^2+b^2+c^2 =< 3^2 =< 9

31 tháng 10 2017

ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)

\(\Rightarrow a^2-3a\le0\)

C/m tương tư ta đc: \(b^2-3b\le0\)

                                  \(c^2-3c\le0\)

\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)

\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)