K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

\(1=\left(a^3+b^3+c^3-3abc\right)^2=\left(a+b+c\right)^2\left(a^2+b^2+c^2-ab-bc-ca\right)^2\)

\(=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\le\left(\dfrac{3\left(a^2+b^2+c^2\right)}{3}\right)^3=\left(a^2+b^2+c^2\right)^3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

16 tháng 9 2021

    Ta có:
    a+ b3 + c3 - 3abc = 1
\(\Leftrightarrow\) (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 1
\(\forall\) x ∈ R, ta có:
a2 + b2 + c2 - ab - bc - ca = \(\dfrac{1}{2}\)[(a - b)2 + (b - c)2 + (c - a)2] > 0 [Vì (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 1 nên phải > 0]
=> a + b + c > 0

    Ta có:
    (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 1
\(\Leftrightarrow\) P = \(\dfrac{1}{a+b+c}\) +  ab + bc + ca
\(\Leftrightarrow\) 2P = \(\dfrac{2}{a+b+c}\) + 2ab + 2bc + 2ca
\(\Leftrightarrow\) 3P = \(\dfrac{1}{a+b+c}+\dfrac{1}{a+b+c}+\left(a+b+c\right)^2\)

Áp dụng BĐT AM-GM cho 3 số dương, ta có:
\(\dfrac{1}{a+b+c}+\dfrac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\)

\(\Leftrightarrow\) P \(\ge1\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}a+b+c=1&\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1&\end{matrix}\right.\)(Tự giải nha :)))

Chứng minh AM-GM 3 số:
     x + y + z ≥ 3\(\sqrt[3]{xyz}\)
\(\Leftrightarrow\) (\(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\))(\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}-\sqrt[3]{xy}-\sqrt[3]{yz}-\sqrt[3]{zx}\)) ≥ 0 (lđ \(\forall\) x, y, z > 0)

 

 

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

20 tháng 7 2017

thỏa cái j sửa đi

12 tháng 9 2021

Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a+b+c\le6\)

Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

12 tháng 9 2021

bạn ơi , kết quả thì đúng r nhưng tại sao đoạn \(2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le6\)

28 tháng 2 2018

Xét : a^3/a^2+b^2

= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2

= a - ab^2/a^2+b^2

>= a - ab^2/2ab

  = a - b/2

Tương tự : b^3/b^2+c^2 >= b  - c/2 và c^3/c^2+a^2 >= c - a/2

=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2

Dấu "=" xảy ra <=> a=b=c=1

Vậy GTNN của P = 3/2 <=> a=b=c=1

Tk mk nha

13 tháng 9 2021

Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\)  ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Mà \(a^2+b^2+c^2=3abc\)

=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)

=> \(a+b+c\ge3\)

Áp dụng bđt bunhia dạng phân thức ta có:

\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)

Đặt \(a+b+c=x\left(x\ge3\right)\)

=> \(M\ge\frac{x^2}{x+6}\)

Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)

<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)

<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)

=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)

=>\(MinM=1\)xảy ra khi a=b=c=1

7 tháng 11 2020

cho xin dấu = để làm cái :D lười tìm dấu = quá

2 tháng 6 2016
  • \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=\left(a+b+c\right)^2-6.\)
  • \(P=\left(a+b+c\right)^2-6-6\left(a+b+c\right)+2017=\left(a+b+c\right)^2-6\left(a+b+c\right)+9+2002\)

\(=\left(a+b+c-3\right)^2+2002\)

  • Mà \(\left(a+b+c-3\right)^2\ge0\)nên GTNN của P bằng 2002.
3 tháng 6 2016

đúng rồi đấy