K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Đặt \(x=a^{\frac{1}{3}};y=b^{\frac{1}{3}};z=c^{\frac{1}{3}}\Rightarrow xyz=1\) và:

\(BDT\Leftrightarrow\frac{x^3}{x^6+5}+\frac{y^3}{y^6+5}+\frac{z^3}{z^6+5}\le\frac{1}{2}\)

Ta có BĐT phụ \(\frac{4x^3}{x^6+5}\le\frac{x^3+1}{x^6+x^3+1}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x^2+x+1\right)\left(3x^6+6x^3+5\right)}{\left(x^6+5\right)\left(x^6+x^3+1\right)}\le0\forall0< x\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{1}{4}\left(\frac{x^3+1}{x^6+x^3+1}+\frac{y^3+1}{y^6+y^3+1}+\frac{z^3+1}{z^6+z^3+1}\right)\)

Cần chứng minh \(\frac{x^3+1}{x^6+x^3+1}+\frac{y^3+1}{y^6+y^3+1}+\frac{z^3+1}{z^6+z^3+1}\le2\)

\(\Leftrightarrow\frac{x^6}{x^6+x^3+1}+\frac{y^6}{y^6+y^3+1}+\frac{z^6}{z^6+z^3+1}\ge1\)

Có dạng \(\frac{x^{2k}}{x^{2k}+x^k+1}+\frac{y^{2k}}{y^{2k}+y^k+1}+\frac{z^{2k}}{z^{2k}+z^k+1}\ge1\forall xyz=1\)

Với k=1 thì có BĐT Câu hỏi của Vũ Tiền Châu - Toán lớp 9 | Học trực tuyến tương tự với bài này (ko biết AD đã fix lỗi ko dán dc link học 24 vào olm chưa, nếu chưa thì ib t gửi full link )

7 tháng 11 2017

Q.lý nào onl duyệt giúp e với 

21 tháng 8 2019

\(VT\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)

Cần chứng minh \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le1\)

\(\Leftrightarrow ab+bc+ca+abc-4\ge0\)

BĐT trên đúng theo AM-GM nên ta có đpcm.

22 tháng 8 2019

Tth lam kieu j vay,

30 tháng 10 2016

Ta có:\(a^5+ab+b^2\ge3a^2b\)

Tương tự ta có:

\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)

\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)

Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)

\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)

Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)

\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

Giả sử \(xy\le1\) thì \(z\ge1\)

Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)

\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)

Dấu = khi \(a=b=c=1\)

30 tháng 10 2016

sao chứng minh đc \(a^5+ab+b^2\ge3a^2b\)vậy bạn

20 tháng 3 2021

Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)

Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta thấy  \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)

Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)

Dấu "=" xảy ra \(< =>a=b=c=3\)

bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn

Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\)  và \(a^2+b^2+c^2\le abc\)

\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)

Tương tự các cái khác ta có

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"

Học tốt

30 tháng 9 2016

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

26 tháng 10 2017

\(\frac{1}{1+a}=\)\(1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)

tt nhan vao ta co

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

26 tháng 10 2017

trong mục câu hỏi tương tự có đó