Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
\(P=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ca}+\frac{b^4}{bc+ab}+\frac{c^4}{ca+bc}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
PS: Ai cập nhật câu này thế?
\(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có :
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)
\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)
\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))
nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm
\(Ta có: \frac{{a^5 }}{{b^3 + c^2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }}\mathop \ge \frac{{3a^2 }}{2}\)
\(\Rightarrow \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - (\frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }})\)
\(Do đó: \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - \frac{{\sqrt {2a(b^3 + c^2 )} }}{2}\mathop \ge \frac{{3a^2 }}{2} - \frac{{2a + b^3 + c^2 }}{4}\)
\(CMTT \frac{{b^5 }}{{c^3 + a^2 }}\mathop \ge \frac{{3b^2 }}{2} - \frac{{2b + c^3 + a^2 }}{4}\), \(\frac{{c^5}}{{a^3+b^2}}\mathop \ge \frac{{3c^2 }}{2} - \frac{{2c + a^3 + b^2 }}{4}\)
\(M \ge \frac{{3(a^2 + b^2 + c^2 )}}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)
\(M \ge \frac{9}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)
Áp dụng Bunhiacoopski ta có:
\(\sqrt {(a^4+b^4+c^4 )(a^2+b^2+c^2)}=\sqrt {(a^4 +b^4+ c^4 ).3}\ge a^3+b^3+c^3 \)
\(\sqrt {(a^4 + b^4 + c^4 )(1 + 1 + 1)} = \sqrt {(a^2 + b^2 + c^2 ).3} \ge a^2 + b^2 + c^2 \Leftrightarrow a^4 + b^4 + c^4 \ge 3\)
Ta có: \(3 = a^2 + b^2 + c^2 \ge \frac{{(a + b + c)^2 }}{3} \Leftrightarrow a^2 + b^2 + c^2 \ge a + b + c\)
\(Đặt t=x^4+y^4+z^4 (t \ge 3) cần CM để trở thành S \ge \frac{{4t - 9 - \sqrt {3t} }}{4}\ge 0\)
\(Ta có: S\ge \frac{{4t - 9 - \sqrt {3t} }}{4} = \frac{{3(t - 3) + \sqrt t (\sqrt t - \sqrt 3 )}}{4} \ge 0
\)
\(Do đó: M\geq \frac{9}{2}\)
Phần đầu mình thiếu nha
\(\frac{a^5}{b^3+c^2}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\ge\frac{3a^2}{2}\)
=> \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\left(\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\right)\)
Do đó \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\frac{\sqrt{2a\left(b^3+c^2\right)}}{2}\ge\frac{3a^2}{2}-\frac{\left(2a+b^3+b^2\right)}{4}\)
CMTT \(\frac{b^5}{c^3+a^2}\ge\frac{3b^2}{2}-\frac{\left(2b+c^3+a^2\right)}{4},\frac{c^5}{a^3+b^2}\ge\frac{3c^2}{2}-\frac{\left(2c+a^3+b^2\right)}{4}\)
\(P=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2-2=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)
\(=\left(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\right)+\left(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\right)-2\)
Áp dụng BĐT AM-GM cho 3 số dương:
\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}.\frac{1}{a}.\frac{1}{a}}=\frac{3}{b}\)
\(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge3\sqrt[3]{\frac{b^2}{c^3}.\frac{1}{b}.\frac{1}{b}}=\frac{3}{c}\)
\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge3\sqrt[3]{\frac{c^2}{a^3}.\frac{1}{c}.\frac{1}{c}}=\frac{3}{a}\)
\(\Rightarrow P\ge\frac{3}{b}+\frac{3}{c}+\frac{3}{a}-2=3-2=1\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\) thì
\(\Rightarrow\hept{\begin{cases}x+y+z=1\\P=\frac{y^3}{x^2}+\frac{z^3}{y^2}+\frac{x^3}{z^2}\end{cases}}\)
Ta có:
\(\frac{x^3}{z^2}+z+z\ge3x,\frac{y^3}{x^2}+x+x\ge3y,\frac{z^3}{y^2}+y+y\ge3z\)
\(\Rightarrow\frac{x^3}{z^2}\ge3x-2z,\frac{y^3}{x^2}\ge3y-2x,\frac{z^3}{y^2}\ge3z-2y\)
\(\Rightarrow P\ge3x-2z+3y-2x+3z-2y=x+y+z=1\)