Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)
2)đk: x>=0 \(\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\left(\sqrt{x}+1\right)\right)}{\sqrt{x}+1}+\frac{9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
\(x\ge0\Leftrightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\frac{9}{\sqrt{x}+1}>0\). áp dụng bđt cosi cho 2 số dương \(\sqrt{x}+1;\frac{9}{\sqrt{x}+1}\) ta có:
\(\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\ge2\sqrt{9}=6\Leftrightarrow\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge6-2=4\)=> Min =4 <=> x=4.
nhớ l i k e
Đặt:⎧⎩⎨⎪⎪⎪⎪⎪⎪a=13xb=45yc=32z{a=13xb=45yc=32z (x,y,z>0)(x,y,z>0)
Khi đó điều kiện đã cho trở thành:3x+5y+7z≤15xyz3x+5y+7z≤15xyz
Áp dụng AM−GMAM−GM ta có:
3x+5y+7z≥15x3y5z7−−−−−−√153x+5y+7z≥15x3y5z715
=>15xyz≥15x3y5z7−−−−−−√15=>x6y5z4≥1.=>15xyz≥15x3y5z715=>x6y5z4≥1.
Ta có:
P=3x+2.54y+3.23z=12(6x+5y+4z)≥12.15x6y5z4−−−−−−√15≥152P=3x+2.54y+3.23z=12(6x+5y+4z)≥12.15x6y5z415≥152 (AM−GM) (AM−GM)
Dấu ′=′′=′ xảy ra <=><=> x=y=z=1x=y=z=1 hay a=13;b=45;c=32
Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :
(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4
=> a+b < = 2
Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2
<=> a.b < = 1
Có :
P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))
< = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)
Áp dụng bđt : x.y < = (x+y)^2/4 thì :
P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)
= \(\frac{10.\left(a+b\right)+16}{6}\)
< = \(\frac{10.2+16}{6}\)= 6
Dấu "=" xảy ra <=> a=b=1
Vậy ..............
Tk mk nha
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
Nhỏ nhất hay lớn nhất