K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Ta có:

\(\sum\dfrac{ab+c}{c+1}=\sum\dfrac{ab+c}{a+c+b+c}\le\sum\dfrac{ab+c}{4}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{a+b+c+3}{4}=\dfrac{4}{4}=1\)

8 tháng 3 2019

Ta có : \(\frac{ab+c}{c+1}=\frac{ab+c\left(a+b+c\right)}{c+a+b+c}=\frac{a\left(b+c\right)+c\left(b+c\right)}{c+a+b+c}=\frac{\left(a+c\right)\left(b+c\right)}{c+a+b+c}\)

Do \(a;b;c>0\Rightarrow a+c;b+c>0\)

Áp dụng BĐT phụ : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta có :

\(\frac{ab+c}{c+1}\le\frac{\left(a+c\right)\left(b+c\right)}{4}\left(\frac{1}{c+a}+\frac{1}{b+c}\right)=\frac{\left(a+c\right)\left(b+c\right)}{4}.\frac{a+b+c+c}{\left(a+c\right)\left(b+c\right)}=\frac{c+1}{4}\left(1\right)\)

Tương tự , ta có : \(\frac{bc+a}{a+1}\le\frac{a+1}{4}\) ; \(\frac{ac+b}{b+1}\le\frac{b+1}{4}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) có : \(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ac+b}{b+1}\le\frac{a+1+b+1+c+1}{4}=\frac{a+b+c+3}{4}=1\)

Dấu " = " xảy ra <=> \(a=b=c=\frac{1}{3}\)

Vậy ...

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$

$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

9 tháng 6 2021

cảm ơn ạ

 

14 tháng 6 2017

Ta có \(\dfrac{ab+c}{c+1}=\dfrac{ab+c\left(a+b+c\right)}{\left(a+c\right)+\left(b+c\right)}=\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\Rightarrow VT=\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+c\right)+\left(b+c\right)}+\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b\right)+\left(b+c\right)}+\dfrac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)+\left(a+c\right)}\)

Đặt \(\left\{{}\begin{matrix}a+c=x\\b+c=y\\a+b=z\end{matrix}\right.\) \(\Rightarrow x+y+z=2\)

\(\Rightarrow VT\Leftrightarrow\dfrac{xy}{x+y}+\dfrac{yz}{z+y}+\dfrac{xz}{x+z}\)

Áp dụng bất đẳng thức \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{xy}{x+y}\le\dfrac{xy}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{y}{4}+\dfrac{x}{4}\)

Thiết lập tương tự và thu lại ta có

\(\Rightarrow VT\le\dfrac{2\left(x+y+z\right)}{4}=1\) ( đpcm )

\(\Leftrightarrow\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

23 tháng 3 2017

Nội suy Sửa đề làm cho bạn

Bài 1:

\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế

\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử

\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)

Thu gọn có thể không cần

\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm

Đẳng thức khi a=b=c

=> dpcm

23 tháng 3 2017

a=b=c sai rồi --> gấp thì đề cũng cho chuẩn

NV
5 tháng 3 2022

Ta có:

\(\dfrac{1}{a+3b}+\dfrac{1}{c+3}\ge\dfrac{4}{a+3b+c+3}=\dfrac{4}{2b+6}=\dfrac{2}{b+3}\)

Tương tự: 

\(\dfrac{1}{b+3c}+\dfrac{1}{a+3}\ge\dfrac{2}{c+3}\)

\(\dfrac{1}{c+3a}+\dfrac{1}{b+3}\ge\dfrac{2}{a+3}\)

Cộng vế:

\(\sum\dfrac{1}{a+3b}+\sum\dfrac{1}{a+3}\ge\sum\dfrac{2}{a+3}\)

\(\Rightarrow\sum\dfrac{1}{a+3b}\ge\sum\dfrac{1}{a+3}\) (đpcm)

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

17 tháng 5 2018

Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh

\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)

\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)

\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)

Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:

\(a\left(a-c\right)\left(b-c\right)\le0\)

Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:

\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)

Áp dụng Bất Đẳng Thức AM-GM ta có:

\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh

Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)