K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019
\(ab+bc+ca=3abc\Rightarrow \frac{ab+bc+ca}{abc}=3\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\) \(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}=\frac{1}{a^2+(a^2+b^2)}+\frac{1}{b^2+(b^2+c^2)}+\frac{1}{c^2+(c^2+a^2)}\)\(\leq \frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\)\(= \frac{1}{9}(\frac{9}{a^2+ab+ab}+\frac{9}{b^2+bc+bc}+\frac{9}{c^2+ca+ca})\)\(\leq \frac{1}{9}(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca})\)\(= \frac{1}{9}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2\) \(= \frac{1}{9}.3^2=1\) Đẳng thức xảy ra khi \(a=b=c=1\)
7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

NV
18 tháng 2 2022

\(\dfrac{ab}{6+2b+c}=\dfrac{ab}{a+b+c+2b+c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)

Tương tự:

\(\dfrac{bc}{6+2c+a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{bc}{2c}\right)\)

\(\dfrac{ac}{6+2a+b}\le\dfrac{1}{9}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}+\dfrac{ac}{2a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{ac+bc}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)=\dfrac{1}{6}\left(a+b+c\right)=1\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)

Cộng theo vế:

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

26 tháng 7 2018

BĐT AM-GM là BĐT Côsi hở ???

5 tháng 3 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{bc}{4\left(a+c\right)}+\dfrac{ab}{4\left(a+c\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{bc+ab}{4\left(a+c\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{b\left(c+a\right)}{4\left(a+c\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)

\(\Leftrightarrow\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}+\dfrac{ab}{a+b+2c}\le\dfrac{a+b+c}{4}\) ( đpcm )

24 tháng 2 2018

câu hỏi là gì ?

24 tháng 2 2018

xin lỗi, mình đánh thiếu. Chứng minh: P=1

4 tháng 2 2018

\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)

Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):

\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)

\("="\Leftrightarrow a=b=c\)

6 tháng 3 2021

* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)

Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)

Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)

Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 3 2021

cảm ơn ạ