Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\sum\dfrac{a^2+6a+3}{a^2+a}=\sum\left(1+\dfrac{5a+3}{a^2+a}\right)=3+\sum\dfrac{5a+3}{a^2+a}\)
Có BĐT phụ: \(\dfrac{5a+3}{a^2+a}\ge-\dfrac{7}{2}a+\dfrac{15}{2}\)đúng vì nó tương đương \(\left(7a+6\right)\left(a-1\right)^2\ge0\left(true\right)\)
Áp dụng tương tự ta có:
\(VT\ge3-\dfrac{7}{2}\left(a+b+c\right)+\dfrac{15}{2}.3\ge3-\dfrac{21}{2}+\dfrac{45}{2}=15\)
Dấu = xảy ra khi a=b=c=1
\(Q=\dfrac{a}{b+mc}+\dfrac{b}{c+ma}+\dfrac{c}{a+mb}\)
\(=\dfrac{a^2}{ab+mac}+\dfrac{b^2}{bc+mab}+\dfrac{c^2}{ac+mbc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(m+1\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(m+1\right)\left(ab+bc+ca\right)}\)
\(=\dfrac{3}{m+1}\)
Lời giải:
Ta có:
\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)
Xét tử số:
\(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)
\(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)
Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
Do đó:
\(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
\(\Rightarrow \text{TS}\geq \sqrt{3}abc\)
\(\Rightarrow P\geq \sqrt{3}\)
Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Cách khác:
\(P^2=\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)
Áp dụng BĐT Cauchy:
\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}\ge2b^2\)
CMTT\(\Rightarrow\)\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
\(\Rightarrow P^2\ge3\Rightarrow P\ge\sqrt{3}\)
Dấu"=" xảy ra\(\Leftrightarrow\)a=b=c=\(\dfrac{1}{\sqrt{3}}\)
\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)
\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)
\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)
\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)
\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Bài 1:
a)
\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)
\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)
b)
\((1-\tan ^2x)\cot^2x+1-\cot^2x\)
\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)
\(=-1^2+1=0\)
c)
\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)
\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)
\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)
Bài 2:
Áp dụng BĐT Cauchy Schwarz ta có:
\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)
\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz:
\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)
\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)
\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)
Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{a\sqrt{a}}{\sqrt{2c+a+b}}+\frac{b\sqrt{b}}{\sqrt{2a+b+c}}+\frac{c\sqrt{c}}{\sqrt{2b+c+a}}\)
\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)
\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)}}\)
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)})^2\leq (a+b+c[((2c+a+b)+(2a+b+c)+(2b+a+c)]\)
\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)})^2\leq 4(a+b+c)^2\)
\(\Leftrightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)}\leq 2(a+b+c)\)
Do đó:
\(P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức Cauchy-Schwars:
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)