Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với x,y >0 ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)
Áp dụng bất đẳng thức trên được:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 )
Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)
\(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)
Cộng vế với vế các BĐT (1), (2) và (3) ta được :
\(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )
dấu " = " xẩy ra khi a = b = c = 1
TA CÓ:
\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)
\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)
ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)
\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)
TA CẦN C/M:
\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\) \(\left(=2abc\left(a+b+c\right)\right)\)
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)
VẬY CẦN C/M:
\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)
XÉT HIỆU:
\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)
\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)
VÌ:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)
\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)
\(\Rightarrow DPCM\)
Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b
Giả sử \(c=min\left\{a,b,c\right\}\)
Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)
Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)
Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)
Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)
=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)
=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)
Ta có đpcm
Áp dụng BĐT côsi ta có:
a² + bc ≥ 2.a√(bc)
<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1)
tương tự vậy:
1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2)
1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3)
lấy (1) + (2) + (3)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab))
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!)
Ta chứng minh bổ đề:
√(ab) + √(bc) + √(ac) ≤ a + b + c
thật vậy, áp dụng BĐT côsi ta được:
a + b ≥ 2√(ab) --- (*)
a + c ≥ 2√(ac) --- (**)
b + c ≥ 2√(bc) --- (***)
lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ]
<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@)
từ (!) và (@)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )
Áp dụng AM - GM:
\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Khi đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)
Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)
Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta thấy \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)
Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)
\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)
Dấu "=" xảy ra \(< =>a=b=c=3\)
bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn
Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\) và \(a^2+b^2+c^2\le abc\)
\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)
Tương tự các cái khác ta có
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"
Học tốt
\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)
\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
bài này có dùng bất đẳng thức cô si ko vậy ạ?