Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{3a+b+c}=\frac{2a}{6a+2b+2c}=\frac{2a}{(a+b)+(a+c)+(a+b)+(a+c)+2a}\leq \frac{2a}{25}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2a}\right)\)
\(=\frac{4}{25}(\frac{a}{a+b}+\frac{a}{a+c})+\frac{1}{25}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
\(\sum \frac{a}{3a+b+c}\leq \frac{4}{25}(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c})+\frac{3}{25}=\frac{12}{25}+\frac{3}{25}=\frac{3}{5}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\sum\frac{a}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)=\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a}{3a+b+c}=\frac{a}{2a+a+b+c}\le\frac{1}{25}\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)=\frac{2}{25}+\frac{9}{25}\left(\frac{a}{a+b+c}\right)\)
Tương tự: \(\frac{b}{a+3b+c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{b}{a+b+c}\right)\) ; \(\frac{c}{a+b+3c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{c}{a+b+c}\right)\)
Cộng vế với vế:
\(VT\le\frac{6}{25}+\frac{9}{25}\left(\frac{a+b+c}{a+b+c}\right)=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Với a, b, c là các số dương, áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}=\frac{a+b+c}{a+3b+b+3c+c+3a}=\frac{a+b+c}{4a+4b+4c}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)
\(\Rightarrow\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
Ta có: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)(*)
\(\Leftrightarrow3ba+3b+\frac{3c}{b+3c}+\frac{3a}{c+3a}\le\frac{9}{4}\)
\(\Leftrightarrow1-3ba+3b+1-\frac{3c}{b+3c}+1-\frac{3a}{c+3a}\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Áp dụng BĐT Cauchy - swarch có
\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3ab+3bc+3ca}\)
Ta sẽ chứng minh : \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3ab+3bc+3ca}\ge\frac{3}{4}\left(1\right)\)
Từ (1) \(\Leftrightarrow4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2+3ab+3bc+3ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)(đúng)
Vậy (*) đúng
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)
Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)
Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)
\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)
Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)
\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)
\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)
Như vậy (*) đúng
Đẳng thức xảy ra khi a = b = c
Đặt \(\hept{\begin{cases}x=3a+b+c\\y=3b+a+c\\z=3c+a+b\end{cases}\left(x;y;z>0\right)}\)
\(\Rightarrow x+y+z=5a+5b+5c=5\left(a+b+c\right)\)
Lại có: \(a+b+c=x-2a=y-2b=z-2c\)
\(\Rightarrow x+y+z=5\left(x-2a\right)=5\left(y-2b\right)=5\left(z-2c\right)\)
\(\Rightarrow4x-\left(y+z\right)=4\left(3a+b+c\right)-\left(4b+4c+2a\right)=10a\)
Tương tự ta có:\(4y-\left(x+z\right)=10b;4z-\left(x+y\right)=10c\)
\(\Rightarrow10T=\frac{4x-\left(y+z\right)}{x}+\frac{4y-\left(x+z\right)}{y}+\frac{4z-\left(x+y\right)}{z}\)
\(=12-\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
\(=12-\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(\le12-6=6\)(Bđt Cô si)
\(\Rightarrow10T\le6\Rightarrow T\le\frac{6}{10}=\frac{3}{5}\)(Đpcm)
Dấu = khi a=b=c
bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi hoặc bdt holder ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\) câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .
Bài 1:Đặt VT=A
Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)
Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự với 2 cái còn lại
\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Đẳng thức xảy ra khi a=b=c
Bài 2:
Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Dự đoán điểm rơi xảy ra khi a=b=c=1
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
Tương tự suy ra
\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)
Gọi VT = T
Đặt \(x=3a+b+c;y=3b+c+a;z=3c+a+b\)
\(\Rightarrow x+y+z=5\left(a+b+c\right)=5\left(x-2a\right)=5\left(y-2b\right)\)
\(=5\left(z-2c\right)\)
\(\Rightarrow4x-\left(y+z\right)=10a;4y-\left(z+x\right)=10b;4z-\left(x+y\right)=10c\)
\(\Rightarrow10T=\frac{4x-\left(y+z\right)}{x}+\frac{4y-\left(z+x\right)}{y}+\frac{4z-\left(x+y\right)}{z}\)
\(=12-\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\le12-6=6\)
\(\Rightarrow T\le\frac{6}{10}=\frac{3}{5}\)
Dấu "=" khi a = b = c
\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)
Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3
à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)
\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{3a+b+c}=\frac{a}{\frac{a+b+c}{3}+\frac{a+b+c}{3}+\frac{a+b+c}{3}+a+a}\leq \frac{a}{25}\left(\frac{1}{\frac{a+b+c}{3}}+\frac{1}{\frac{a+b+c}{3}}+\frac{1}{\frac{a+b+c}{3}}+\frac{1}{a}+\frac{1}{a}\right)\)
hay \(\frac{a}{3a+b+c}\leq \frac{9a}{25(a+b+c)}+\frac{2}{25}\)
Hoàn toàn TT: \(\frac{b}{a+3b+c}\leq \frac{9b}{25(a+b+c)}+\frac{2}{25}; \frac{c}{a+b+3c}\leq \frac{9c}{25(a+b+c)}+\frac{2}{25}\)
Cộng theo vế các BĐT trên
\(\Rightarrow T\leq \frac{9(a+b+c)}{25(a+b+c)}+\frac{6}{25}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Akai Haruma: em có một cách khác là chuẩn hóa, nhưng ko biết đúng không. Vì cô làm cách kia rồi nên em làm cách này, chứ em thích cách kia hơn.
BĐT trên là thuần nhất (đồng bậc) nên chuẩn hóa a + b + c = 3. Ta cần chứng minh:
\(\Sigma\frac{a}{2a+3}\le\frac{3}{5}\)
C1: Áp dụng BđT AM-GM \(\frac{a}{2a+3}=\frac{a}{a+a+1+1+1}\le\left(\frac{1}{25}+\frac{1}{25}+\frac{3a}{25}\right)\)
Tương tự hai BĐT còn lại và cộng theo vế ta thu được đpcm.
Cách 2: (ko hay + dài)
\(BĐT\Leftrightarrow\Sigma\left(\frac{a}{2a+3}-\frac{1}{5}\right)\le0\) \(\Leftrightarrow\Sigma\left(\frac{3\left(a-1\right)}{5\left(2a+3\right)}-\frac{3}{25}\left(a-1\right)\right)+\Sigma\frac{3}{25}\left(a-1\right)\ge0\)
\(\Leftrightarrow\Sigma\left(a-1\right)\left(\frac{3}{5\left(2a+3\right)}-\frac{3}{25}\right)\le0\)\(\Leftrightarrow\Sigma\frac{-30\left(a-1\right)^2}{5.25\left(2a+3\right)}\le0\) (đúng)
Ta có đpcm