Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+a}{c-a}+\frac{c+a}{c-a}.\frac{a+b}{a-b}\)\(=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2+ab+bc+ca\right)\left(c-a\right)+\left(c^2+ab+bc+ca\right)\left(a-b\right)+\left(a^2+ab+bc+ca\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2c+bc^2+c^2a-ab^2-a^2b-ca^2\right)+\left(c^2a+a^2b+ca^2-bc^2-ab^2-b^2c\right)+\left(a^2b+ab^2+b^2c-ca^2-bc^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(a^2b-ca^2\right)+\left(b^2c-bc^2\right)-\left(ab^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(b-c\right)\left(a^2+bc-ab-ac\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b
Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )
Vậy A = -1
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\Rightarrow x+y+z=0\).
\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=4+2.\frac{x+y+z}{xyz}=4+0=4\).
\(\Leftrightarrow A=\pm2\).
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
cố tử thần ♡๖ۣۜŦεαм♡❤Ɠ长♡ღ
Chị ơi dùng bđt BCS , dấu = xảy ra P =1 như thế có gọi là giá trị của P=1 không nhỉ ?
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{a^2\left(b-c\right)-b^2\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{a^2b-a^2c-b^2a+b^2c}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{1}{a-b}.\frac{\left(a-b\right)\left(ab-ac-bc\right)}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)
\(P=\frac{ab-ac-bc}{\left(a-c\right)\left(b-c\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(P=\frac{ab-ac-bc+c^2}{\left(a-c\right)\left(b-c\right)}=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)
=> P = 1
Đáp số: P=1
\(P=-\frac{a^2}{\left(a-b\right)\left(c-a\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}-\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)