K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

đề là sao vậy ? kiểm tra lại hộ

9 tháng 10 2019

Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

Vậy a,b,c,d chia hết cho 5

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

27 tháng 1 2019

\(b,a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)

Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)

Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)

mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)

Câu a để nghĩ tiếp 

27 tháng 1 2019

bn làm câu b được không

6 tháng 4 2017

ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3

do đóa/a+2b=b/b+2c=c/c+2a=1/3

hay a chia 3 = a+2b

       b chia 3 =b+2c

        c chia 3 =c+2a

ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3

nen a+b+c chia het 3

29 tháng 6 2020

Bài làm:

Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)

Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)

Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)

\(\Rightarrow a+b+c⋮3\)

11 tháng 2 2020

1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100

= 3x(3 + 32 + ... + 3100

= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 3+ 38) + ... + (397 398 + 399 + 3100)]

= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]

= 3x(120 + 34.120 + .... + 396.120)

= 3x.120.(1 + 34 + .... + 396)

=> \(M⋮120\)(ĐPCM)

2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Nếu a + b + c = 0

=> a + b = - c

b + c = -a

c + a = -b

Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy nếu a + b + c = 0 thì P = -3

nếu a + b + c  \(\ne\)0 thì P = 6

11 tháng 2 2020

Ta có : 

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

Vì \(120⋮120\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)