Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
Vậy a,b,c,d chia hết cho 5
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
\(b,a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)
Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)
mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)
Câu a để nghĩ tiếp
ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3
do đóa/a+2b=b/b+2c=c/c+2a=1/3
hay a chia 3 = a+2b
b chia 3 =b+2c
c chia 3 =c+2a
ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3
nen a+b+c chia het 3
Bài làm:
Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)
Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)
Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)
\(\Rightarrow a+b+c⋮3\)
1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100
= 3x(3 + 32 + ... + 3100)
= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ... + (397 398 + 399 + 3100)]
= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]
= 3x(120 + 34.120 + .... + 396.120)
= 3x.120.(1 + 34 + .... + 396)
=> \(M⋮120\)(ĐPCM)
2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Nếu a + b + c = 0
=> a + b = - c
b + c = -a
c + a = -b
Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Vậy nếu a + b + c = 0 thì P = -3
nếu a + b + c \(\ne\)0 thì P = 6
Ta có :
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)
\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)
\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)
Vì \(120⋮120\)
\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)
\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)