K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)

\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)

Vì \(a\ne c\)nên \(c-a\ne0\)

Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)

Giả sử \(a^2+b^2+c^2\)là số nguyên tố

Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)

\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1

Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)

nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)

Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)

Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)

Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)

Từ (1), (2) suy ra \(0< ac< 1\)

Mà a,c là số nguyên nên ac là số nguyên 

Do đó không có giá trị a,c thỏa mãn

suy ra điều giả sử sai

Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố

1 tháng 12 2019

tự giải vl

3 tháng 10 2021

Ta có : \(P=3\sqrt{6}\sqrt{\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}}\)   = \(3\sqrt{6}.Q\)

Thấy : \(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2=2bc\) ( do a + b + c = 0 )

Suy ra : \(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\) . CMTT : \(\frac{b^2}{b^2-c^2-a^2}=\frac{b^2}{2ac};\frac{c^2}{c^2-a^2-b^2}=\frac{c^2}{2ab}\) 

Suy ra : \(Q=\sqrt{\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}}=\sqrt{\frac{a^3+b^3+c^3}{2abc}}=\sqrt{\frac{3abc}{2abc}}=\sqrt{\frac{3}{2}}\)  ( vì a + b + c = 0 )

Khi đó : \(P=3\sqrt{6}.\sqrt{\frac{3}{2}}=9\) là 1 số nguyên 

( Q.E.D) 

1 tháng 8 2018

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

15 tháng 12 2016

mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)

10 tháng 5 2017

khó quá chưa học

12 tháng 6 2020

Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (\(a;b;c\ne0\) )

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1-2\left(\frac{ayz+bxz+cxy}{abc}\right)=1-2.0=1\)

=> đpcm

12 tháng 6 2020

á em đổi biến lộn ạ. Em định viết H;U;Y  cho đúng tên mình mà quen tay lộn vào Y;Z ạ

Đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)\rightarrow\left(H;U;Y\right)\)

Khi đó ta có:

\(H+U+Y=1;\frac{1}{H}+\frac{1}{U}+\frac{1}{Y}=0\Rightarrow HU+UY+YH=0\)

Thay vào thì :

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(H+U+Y\right)^2-2\left(HU+UY+YH\right)=1\)

Vậy ta có đpcm