Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=\frac{-1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)( 1 )
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
Mà theo ( 1 ) nên có \(a^2+b^4+c^4=\frac{1}{2}\)
P/S:Hướng lm là như vầy nhé !
Cho a + b + c = 0 và a2 + b2 +c2= 1 Tính giá trị của biểu thức M = a4+b4+c4 Giúp mk vs nha!!
Tham khảo
Ta có
\(4a^2+b^2=5ab\)
\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)
\(TH1:a=b\)
\(\Leftrightarrow\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
\(TH2:4a=b\)
\(\Leftrightarrow\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
Vậy...............
k mk nha
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+0=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)
Mặt khác:
\(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
=>\(\Rightarrow a^4+b^4+c^4+2.1=4\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)
tính tương tự câu kia
Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
Lời giải:
a)
$A=B\Leftrightarrow (x-3)(x+4)-2(3x-2)=(x-4)^2$
$\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16$
$\Leftrightarrow 3x=24\Leftrightarrow x=8$
b)
$A=B\Leftrightarrow (x+2)(x-2)+3x^2=(2x+1)^2+2x$
$\Leftrightarrow x^2-4+3x=4x^2+6x+1$
$\Leftrightarrow 3x^2+3x+5=0$
$\Leftrightarrow 3(x+\frac{1}{2})^2=\frac{-17}{4}< 0$ (vô lý)
Do đó k có giá trị nào của $x$ để $A=B$
c)
$A=B\Leftrightarrow (x-1)(x^2+x+1)-2x=x(x-1)(x+1)$
$\Leftrightarrow x^3-1-2x=x(x^2-1)=x^3-x$
$\Leftrightarrow x=-1$
d)
$A=B\Leftrightarrow (x+1)^3-(x-2)^3=(3x-1)(3x+1)$
$\Leftrightarrow [(x+1)-(x-2)][(x+1)^2+(x+1)(x-2)+(x-2)^2]=9x^2-1$
$\Leftrightarrow 3(x^2+2x+1+x^2-x-2+x^2-4x+4)=9x^2-1$
$\Leftrightarrow 3(3x^2-3x+3)=9x^2-1$
$\Leftrightarrow -9x=-10\Leftrightarrow x=\frac{10}{9}$