Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a^2/c=x;b^2/a=y;c^2/b=z
a^2/c*b^2/a*c^2/y=x.y.z=1
c/a^2=; a/b^2=; a/c^2=
Ta có: x+y+z=1/x+1/y+1/z
x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)
Lại có: (x-1)(y-1)(z-1)
=xyz-xy-yz-zx+x+y+z-1
=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
x-1, y-1 ,z-1 ít nhất 1 số bằng 0
Nếu x-1=0 x=1 a^2/c=1
a^2=c
Vậy....
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
(a+b+c)^2=1= a^2+b^2+c^2+2(ab+bc+ac)=1
=> ab+bc+ac=0 (1)
x/a=y/b=z/c =>x=y.a/b , z=y.c/b (2)
Đặt A = x.y+y.z+z. thay x và z của (2) vào ta có
A =(y.a/b).y + y.(y.c/b) +(y.a/b).(y.c/b)
=y^2 (a/b+c/b +ac/b^2)
=y^2(ab+bc+ac)/b^2
Kết hợp (1) ta có A=0 đpcm
Ta có: a + b + c = 1
=>\(\left(a+b+c\right)^2=1\)
=>\(a^2+b^2+c^2+ab+bc+ca=1\)
=> ab + bc + ca = 0(Do a^2 + b^2 + c^2 = 1)
Ta có
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(Do a + b + c = 1)
\(\Rightarrow\hept{\begin{cases}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{cases}}\)
Đặt x + y + z = k
=> \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\Rightarrow\hept{\begin{cases}xy=abk^2\\yz=bck^2\\xz=ack^2\end{cases}}\Rightarrow xy+yz+xz=k^2\left(ab+bc+ca\right)\)
mà ab + bc + ca = 0
=>xy + yz + xz = k^2.0 = 0(ĐPCM)
6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm
Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số
=> kết quả mỗi nhóm là số âm
=> Tích của 99 số là tích của 33 số âm => kết quả là số âm
Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương
\(f\left(x\right)=ax^{2\: }+bx+c\)
\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
Ta có: \(\hept{\begin{cases}a+3c=2019\\a+2b=2020\end{cases}}\)
\(\Rightarrow a+3c+a+2b=2019+2020\)
\(\Leftrightarrow2a+2b+3c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)+c=4039\)
Vì a,b,c không âm => 2(a+b+c)\(\le2\left(a+b+c\right)+c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)=4039\)
\(\Leftrightarrow a+b+c=\frac{4039}{2}\)
\(\Leftrightarrow a+b+c=2019\frac{1}{2}\)
\(\Rightarrow f\left(1\right)\le2019\frac{1}{2}\left(đpcm\right)\)
Bài 1
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{99.100}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Còn những bài kia em không biết làm vì em mới học lớp 6.
Chúc anh/chị học tốt!
Bài 1
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Bài 3:
b)\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Ta thấy: \(\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\)
\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)\(\Rightarrow\begin{cases}2x=27\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-......+\frac{1}{99}\)-\(\frac{1}{100}\)
\(\Rightarrow\)\(1-\frac{1}{100}\)
=99/100
a) \(\frac{99}{100}\)
b)\(\frac{11}{24}\)
3) x=\(\frac{27}{2}\)
y=\(\frac{-10}{3}\)
1/ Giả sử có hữu hạn số nguyên tố là a1,a2,a3,...,an trong đó an là số nguyên tố lớn nhất trong tất cả các số nguyên tố.
Xét số A= a1.a2.a3....an chia hết cho mỗi số nguyên tố ap (với 1<=p<=n)
=> số A+1 chia cho mỗi số ap đều dư 1.(1)
Lại có A+1 > an => A+1 là hợp số =>A+1 chia hết cho 1 trong các số nguyên tố ap,mâu thuẫn với (1).
=> điều giả sử là sai=> có vô số số nguyên tố
2/ ko biết vì học lớp 6
3/
Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số a/b (a và b là các số nguyên).Tập hợp số vô tỉ kí hiệu là \(\mathbb I\)
Ví dụ:
- Số thập phân vô hạn có chu kỳ thay đổi: 0,1010010001000010000010000001...
- Số = 1,41421 35623 73095 04880 16887 24209 7...
- Số pi = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679...
- Số lôgarít tự nhiên e = 2,71828 18284 59045 23536...
vì không có hữu hạn số tự nhiên nên ko có hữu hạn số nguyên tố
\(b+c=a\Rightarrow b+c-a=0\Leftrightarrow2b+2c-2a=0\)
Ta có:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2-\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}}\)
\(=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2+\frac{2c+2b-2a}{abc}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2}=\left|\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right|\)là số hữu tỉ (đpcm)