K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\Rightarrow M=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

Xét \(a+b+c\ne0\) ta có:\(\frac{a-b+c}{b}=\frac{b-c+a}{c}=\frac{c-a+b}{a}=\frac{a-b+c+b-c+a+c-a+b}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a-b+c=b\\b-c+a=c\\c-a+b=a\end{cases}}\Rightarrow\hept{\begin{cases}a+c=2b\\a+b=2c\\b+c=2a\end{cases}}\Rightarrow M=\frac{2a.2b.2c}{abc}=8\)

29 tháng 7 2019

#)Giải :

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)

\(\Leftrightarrow\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

TH1 : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Leftrightarrow M=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1}\)

TH2 : \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}M=\frac{2c.2b.2a}{abc}=8}\)

30 tháng 10 2019

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)

\(=\frac{a+b+c}{a+b+c}=1\left(ADTCDTSBN\right)\)

\(\Rightarrow\frac{a+b}{c}=\frac{a+c}{b}=\frac{b+c}{a}=2\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=2^3=8\)

\(\Rightarrow M=8\)

9 tháng 1 2020

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\)   (1)

 \(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\)              (2)

Từ (1) và (2) \(\Rightarrow a=b=c\) 

Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

8 tháng 11 2018

Th1: a+b+c khác 0

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{\left(-a\right)+b+c}{a}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{\left(-a\right)+b+c}{a}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào b/t A. ta có:

\(A=\frac{aaa}{\left(a+a\right).\left(a+a\right).\left(a+a\right)}=\frac{aaa}{2a.2a.2a}=\frac{aaa}{8aaa}=\frac{1}{8}\)

th2: a+b+c = 0

=> a+b=-c

b+c=-a

c+a=-b

thay a+b=-c, b+c=-a, c+a=-b vào b/t A ta có:

\(A=\frac{abc}{\left(-c\right).\left(-a\right).\left(-b\right)}=-1\)

21 tháng 12 2017

Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)

Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)

Vậy.................................