Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm các chữ số a và b sao cho:
cho biết số abc chia hết cho 7. Chứng minh rằng 2a+3b+c chia hết cho 7
abc chia hết cho 7
=> 100a+10b+c chia hết cho 7
=> 98a+2a+7b+3b+c chia hết cho 7
=> (98a+7b)+( 2a+3b+c) chia hết cho 7
=> 7.(14a+b) + ( 2a+3b+c) chia hết cho 7
=> 2a+3b+c chia hết cho 7 ( vì 7.(14a+b) chia hết cho 7)
=> dpcm
a+b+c=a+2b chia hết cho 7 (b=c)
abc=100a+10b+c=100a+11b=98a+7b+2(a+2b)
Ta thấy 98a+7b = 7(14a+b) chia hết cho 7
mà a+2b chia hết cho 7 => 2(a+2b) chia hết cho 7
=> abc chia hết cho 7
abc=100a+10b+c=(98a+7b)+(2a+3b+c)=7(14a+b)+(2a+3b+c) không chia hết cho 7 vì 2a+3b+c không chia hết cho 7
abc = 100a + 10b + c = 98a + 2a + 7b + 2b + b + 2c - c = (98a + 7b) + (2a + 2b + 2c) + (b - c) = 7(14a + b) + 2(a + b + c) + (b - c) chia hết cho 7.
Mà 7(14a + b) chia hết cho 7 và 2(a + b + c) chia hết cho 7
\(\Rightarrow\)b - c chia hết cho 7
Mà 0\(\le\)b - c < 7
Vậy b - c = 0
Quy tắc thứ nhất: Lấy chữ số đầu tiên bên trái nhân với 3 rồi cộng với chữ số thứ hai rồi trừ cho bội của 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 3 rồi trừ cho bội củ 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 4 rồi trừ cho bội của 7; .... Nếu kết quả cuối cùng là một số chia hết cho 7 thì số đã cho chia hết cho 7.
Ví dụ: a) cho số 714
-có (7.3 + 1) - 3.7 = 1
-có (1.3 + 4) - 7 = 0
Vậy số 714 chia hết cho 7.
Kểm tra thấy: 714 = 7.102
b) cho số 24668
-có (2.3 + 4) - 7 = 3
-tiếp theo (3.3 + 6) - 2.7 = 1
-tiếp theo (1.3 + 6) - 7 = 2
-cuối cùng 2.3 + 8 = 14 chia hết cho 7
Vậy số 24668 chia hết cho 7
Kiểm tra thấy: 24668 = 7.3524
a+b+c=7
Suy ra:a chia hết cho 7,b chia hết cho 7 và c cũng chia hết cho 7(vì trong 1 tổng nếu các số hạng đều chia hết cho 1 số thì các số hạng trong tổng đó cũng chia hết cho số đó)
Ta có:abc=a.100+b.10+c
Mà a chia hết cho 7 nên a.100 cũng chia hết cho 7(vì trong tích đó chỉ cần 1 số hạng chia hết cho 7 thì tích đó chia hết cho 7)
Nên b.10,c cũng chia hết cho 7.
Vậy a.100+b.10+c chia hết cho 7
Hay:abc chia hết cho 7
Suy ra c.1 chia hết cho 7
\(\overline{abc}=100a+10b+c=\left(98a+7b\right)+\left(a+b+c\right)+\left(a+2b\right).\) chia hết cho 7
\(\Rightarrow\left(98a+7b\right)+7+\left(a+2b\right)\) chia hết cho 7
Mà \(\left(98a+7b\right)+7\) chia hết cho 7 nên \(a+2b\) chia hết cho 7
Do \(a+b+c=7\Rightarrow a+b\le7\)
Với các cặp giá trị a; b; c như bảng trên thoả mãn đề bài