\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)

Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)

2 tháng 10 2017

tôi lớp 7 mà

3 tháng 12 2019

Ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)

\(\Rightarrow\frac{a}{b-c}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{b-c}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ab}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+bc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

Cộng các đẳng thức trên ta được:

\(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)\(\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Vậy \(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)0 (đpcm)

22 tháng 10 2019

Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath

12 tháng 8 2019

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)

\(=\frac{b}{a-c}+\frac{c}{b-a}\)

\(=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 1 )
Tương tự,ta có:

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-ba+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 2 )
\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+cb-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 3 )
Cộng vế theo vế của ( 1 );( 2 );( 3 ) suy ra đpcm 

7 tháng 1 2017

Từ gt,ta có :\(\frac{A}{B-C}=-\left(\frac{B}{C-A}+\frac{C}{A-B}\right)=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)}\Rightarrow\frac{A}{\left(B-C\right)^2}=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(1\right)\)

Tương tự,ta có :\(\frac{B}{\left(C-A\right)^2}=\frac{CB-AB-C^2+A^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(2\right);\frac{C}{\left(A-B\right)^2}=\frac{CA-CB-A^2+B^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(3\right)\)

Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.

24 tháng 8 2017

07/01/2017 lúc 19:12

CHO A,B,C ĐÔI MỘT KHÁC NHAU VÀ AB−C +BC−A +CA−B =0

TÍNH GIÁ TRỊ CỦA A(B−C)2 +B(C−A)2 +C(A−B)2 

Được cập nhật {timing(2017-08-24 22:13:15)}

Toán lớp 8

Phan Thanh Tịnh 07/01/2017 lúc 23:29
Thống kê hỏi đáp
 Báo cáo sai phạm

Từ gt,ta có :AB−C =−(BC−A +CA−B )=AB−B2−AC+C2(A−C)(A−B) ⇒A(B−C)2 =AB−B2−AC+C2(A−C)(A−B)(B−C) (1)

Tương tự,ta có :B(C−A)2 =CB−AB−C2+A2(A−C)(A−B)(B−C) (2);C(A−B)2 =CA−CB−A2+B2(A−C)(A−B)(B−C) (3)

Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.

 Đúng 18 Hoàng Nguyễn Quỳnh Khanh đã chọn câu trả lời này.

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

26 tháng 4 2017

1/ Đặt \(a-b=x,b-c=y,c-a=z\)

Ta có: \(\frac{y}{x\left(-z\right)}+\frac{z}{y\left(-x\right)}+\frac{x}{z\left(-y\right)}=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(\frac{\left(-1\right)y^2}{xyz}+\frac{\left(-1\right)z^2}{xyz}+\frac{\left(-1\right)x^2}{xyz}=\frac{2yz}{xyz}+\frac{2zx}{xyz}+\frac{2xy}{xyz}\)

\(\left(-1\right)\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x+y+z=0\)luôn đúng vì a-b+b-c+c-a=0

Vậy suy ra đpcm. BẤM ĐÚNG NHÉ

26 tháng 4 2017

Câu 1 gần tương tự bài 3.2 sách bài tập toán 8 tập 2 trang 18

AH
Akai Haruma
Giáo viên
10 tháng 3 2019

Lời giải:

Từ \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \frac{a}{b-c}=-\left(\frac{b}{c-a}+\frac{c}{a-b}\right)=-\frac{ba-b^2+c^2-ca}{(c-a)(a-b)}\)

\(\Rightarrow \frac{a}{(b-c)^2}=-\frac{ba-b^2+c^2-ca}{(a-b)(b-c)(c-a)}\)

Hoàn toàn tương tự:

\(\frac{b}{(c-a)^2}=-\frac{a^2-ab+bc-c^2}{(a-b)(b-c)(c-a)}\); \(\frac{c}{(a-b)^2}=-\frac{ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}\)

Cộng theo vế những điều vừa thu được ta có:

\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=-\frac{ba-b^2+c^2-ca+a^2-ab+bc-c^2+ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}=0\)

Ta có đpcm.

23 tháng 3 2019

⇒ab−c=−(bc−a+ca−b)=−ba−b2+c2−ca(c−a)(a−b)⇒ab−c=−(bc−a+ca−b)=−ba−b2+c2−ca(c−a)(a−b)

⇒a(b−c)2=−ba−b2+c2−ca(a−b)(b−c)(c−a)⇒a(b−c)2=−ba−b2+c2−ca(a−b)(b−c)(c−a)

Hoàn toàn tương tự:

b(c−a)2=−a2−ab+bc−c2(a−b)(b−c)(c−a)b(c−a)2=−a2−ab+bc−c2(a−b)(b−c)(c−a); c(a−b)2=−ac−a2+b2−bc(a−b)(b−c)(c−a)c(a−b)2=−ac−a2+b2−bc(a−b)(b−c)(c−a)

Cộng theo vế những điều vừa thu được ta có:

a(b−c)2+b(c−a)2+c(a−b)2=−ba−b2+c2−ca+a2−ab+bc−c2+ac−a2+b2−bc(a−b)(b−c)(c−a)=0

25 tháng 3 2020

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)

\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^