Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)
(bất đẳng thức tam giác)
\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)
Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)
thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)
\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)
Vậy A > 0
Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4 > 0
Ta có :
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Áp dụng bất đẳng thức tam giác thì ta có :
\(b+c-a>0\)
\(a+c-b>0\)
\(a+b-c>0\)
Hiển nhiên \(a+b+c>0\)
\(A\)là tích của 4 số dương nên \(A>0.\)
Vậy \(A>0.\)
=(2ab−a2−b2+c2)(2ab+a2+b2−c2)
=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]
=[c2−(a−b)2][(a+b)2−c2]
=(b+c−a)(a+c−b)(a+b−c)(a+b+c)
Áp dụng bất đẳng thức tam giác thì ta có :
b+c−a>0
a+c−b>0
a+b−c>0 a+b+c>0
A A là tích của 4 số dương nên A>0.
Vậy A>0.
Vì a,b,c là ba cạnh của tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)
hay \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)(1)
Ta có: \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)
Vì a + b + c > 0 ( Vì a,b,c là ba cạnh của tam giác kết hợp với (1) thì:
\(\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)>0\)
hay A > 0 (đpcm)