\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

1 . 

Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)

Chia cả hai vế cho abc > 0 

\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)

\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)

Vậy GTNN của C là 17 khi a =2; b =1; c = 1

20 tháng 2 2020

2 . 

Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên 

\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)

\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tự ta có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)

\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)

Cộng vế theo vế (1), (2) và (3) ta được: 

\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)

\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)

Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Chúc bạn học tốt !!!

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

12 tháng 4 2016

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

29 tháng 7 2020

Ta có: \(a+b+c=1\Leftrightarrow a^2+ab+ca=a\)

Thay vào ta có: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng Cauchy ngược: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\)

Tương tự ta CM được: \(\sqrt{\frac{ab}{c+ab}}\le\frac{\frac{a}{c+a}+\frac{b}{c+b}}{2}\)

                                     \(\sqrt{\frac{ca}{b+ca}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\)

Cộng vế 3 BĐT trên ta được:

\(P\le\frac{\frac{a}{c+a}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}}{2}\)

\(=\frac{\left(\frac{a}{c+a}+\frac{c}{a+c}\right)+\left(\frac{b}{c+b}+\frac{c}{b+c}\right)+\left(\frac{a}{b+a}+\frac{b}{a+b}\right)}{2}\)

\(=\frac{1+1+1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)

Vậy \(Max_P=\frac{3}{2}\Leftrightarrow a=b=c=\frac{1}{3}\)

29 tháng 7 2020

Ta có :

\(c+ab=\left(a+b+c\right)c+ab=ac+ac+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự :  \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+b\right)\left(c+a\right)\)

 \(\Rightarrow P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT cauchy :

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{c+a}\right)\)

Cộng vế với vế :

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{c+b}+\frac{a}{c+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+b}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)