Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz ta có:
\(\dfrac{1}{2a^2+b^2}=\dfrac{1}{a^2+a^2+b^2}\le\dfrac{1}{9}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(\left\{{}\begin{matrix}\dfrac{1}{2b^2+c^2}\le\dfrac{1}{9}\left(\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\left(\dfrac{1}{c^2}+\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\end{matrix}\right.\)
Cộng theo vế:
\(L\le\dfrac{1}{9}\left(\dfrac{3}{a^2}+\dfrac{3}{b^2}+\dfrac{3}{c^2}\right)=\dfrac{1}{9}\left[3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\right]=\dfrac{1}{9}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)
\(\Rightarrow (2a+b+c)^2\geq 4(a+b)(a+c)\)
\(\Rightarrow \frac{1}{(2a+b+c)^2}\leq \frac{1}{4(a+b)(a+c)}\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(P\leq \frac{1}{4}\left(\frac{1}{(a+b)(a+c)}+\frac{1}{(b+c)(b+a)}+\frac{1}{(c+a)(c+b)}\right)\)
\(\Leftrightarrow P\leq \frac{1}{4}.\frac{(b+c)+(c+a)+(a+b)}{(a+b)(b+c)(c+a)}\)
\(\Leftrightarrow P\leq \frac{a+b+c}{2(a+b)(b+c)(c+a)}\)
Lại có: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\) (theo AM-GM)
\(\Rightarrow P\leq \frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}(1)\)
Tiếp tục áp dụng BĐT AM-GM:
\(\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}; \frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}\)
\(\Rightarrow 2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow 3\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(\Rightarrow a+b+c\leq 3abc(2)\)
Từ \((1); (2)\Rightarrow P\leq \frac{3abc}{16abc}=\frac{3}{16}\)
Vậy \(P_{\max}=\frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\geq 2ab\)
\(b^2+1\geq 2b\)
Suy ra \(a^2+2b^2+3\geq 2(ab+b+1)\) \(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\)
Thực hiện toàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\text{VT}\leq \frac{1}{2}\underbrace{\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)}_{M}(1)\)
Lại có: \(M=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{ab.ac+b.ac+ac}+\frac{a}{bc.a+c.a+a}+\frac{1}{ca+a+1}\)
\(=\frac{ac}{a+1+ac}+\frac{a}{1+ac+a}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1(2)\)
Từ \((1); (2)\Rightarrow \text{VT}\leq \frac{1}{2}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Ta có : \(a+b+c=3\Rightarrow a^2+b^2+c^2\ge3\)
Theo BĐT AM - GM ta có :
\(a^4+b^2\ge2a^2b\)
\(b^4+c^2\ge2b^2c\)
\(c^4+a^2\ge2c^2a\)
\(2a^2b^2+2a^2\ge4a^2b\)
\(2b^2c^2+2b^2\ge4b^2c\)
\(2c^2a^2+2c^2\ge4c^2a\)
Cộng từng vế BĐT ta được :
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2b+b^2c+c^2a\le\dfrac{3^2+3^2}{6}=3\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(VT\ge\dfrac{9}{6+a^2b+b^2c+c^2a}=\dfrac{9}{9}=1\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Viết lại BĐT:\(\dfrac{a^2b}{a^2b+2}+\dfrac{b^2c}{b^2c+2}+\dfrac{c^2a}{c^2a+2}\le1\)
Áp dụng BĐT AM-GM:
\(VT\le\sum\dfrac{a^2b}{3\sqrt[3]{a^4b^2}}=\dfrac{1}{3}\left(\sqrt[3]{a^2b}+\sqrt[3]{b^2c}+\sqrt[3]{c^2a}\right)\)
\(\le\dfrac{1}{9}\left(3a+3b+3c\right)=1\)
Suy ra đpcm
\(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\left(\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}\right)+3\\ \overset{AM-GM}{\ge}\dfrac{9}{2a-a^2+2b-b^2+2c-c^2}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ \ge\dfrac{9}{2\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{3}}+3\\ =\dfrac{9}{2\cdot1-\dfrac{1}{3}}+3=\dfrac{42}{5}\)
Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}2a-a^2=2b-b^2=2c-c^2\\a=b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Vậy \(A_{Min}=\dfrac{42}{5}\) khi \(a=b=c=\dfrac{1}{3}\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
Ta có: \(a^2+2b+3=a^2+2b+1+2\ge2\left(a+b+1\right)\)
Tương tự ta được: \(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\right)\)
Ta sẽ chứng minh \(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\le1\)
\(\Leftrightarrow\dfrac{-b-1}{a+b+1}+\dfrac{-c-1}{b+c+1}+\dfrac{-a-1}{c+a+1}\le-2\)
\(\Leftrightarrow\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}\ge2\)
\(\Leftrightarrow\dfrac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\dfrac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\dfrac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\ge2\left(1\right)\)
Cần chứng minh BĐT (1) đúng
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)
Mà \(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)
\(=\dfrac{1}{2}\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9\right]\)
\(=\dfrac{1}{2}\left(a+b+c+3\right)^2\)\(\Rightarrow VT\left(1\right)\ge2=VP\left(1\right)\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Bđt cauchy-schwarz dạng engel dạng tổng quát là j vây c