K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

23 tháng 7 2020

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thya các giá trị của a, b, c., d vào M . Tính đc M = 0

5 tháng 9 2016

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

5 tháng 9 2016

Ta có 

(m+n+p)^q >= m^q+n^q+p^q

=>a+b+c=1

=>(a+b+c)^2016=1 >= a2016 + b2016 + c2016

Mà  a2016 + b2016 + c2016 >=0

=>  a2016 + b2016 + c2016=1