K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)

\(=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(b+c\right)+a\left(b+c\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\rightarrow scp\)

4 tháng 12 2017

Có : a^2+1 = a^2+ab+bc+ca = (a^2+ab)+(bc+ca) = (a+b).(a+c)

Tương tự : b^2+1 = (b+c).(b+a)

c^2+1 = (c+a).(c+b)

=> (a^2+1).(b^2+1).(c^2+1) = [(a+b).(b+c).(c+a)]^2 là 1 số chính phương

=> ĐPCM

k mk nha

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

3 tháng 10 2018

\(M=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=>đpcm

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

Vì $ab+bc+ac=1$ nên:

\(\left\{\begin{matrix} a^2+1=a^2+ab+bc+ac=a(a+b)+c(a+b)=(a+c)(a+b)\\ b^2+1=b^2+ab+bc+ac=b(b+a)+c(a+b)=(b+c)(b+a)\\ c^2+1=c^2+bc+ab+ac=c(c+b)+a(b+c)=(c+a)(c+b)\end{matrix}\right.\)

\(\Rightarrow P=(a^2+1)(b^2+1)(c^2+1)=(a+b)(a+c)(b+a)(b+c)(c+a)(c+b)\)

\(=[(a+b)(b+c)(c+a)]^2\) là số chính phương

Ta có đpcm.

26 tháng 9 2018

Ta có 1+a2=ab+ac+bc+a2=(a+b)(a+c)

TT: 1+b2=(a+b)(b+c)

1+c2=(a+c)(b+c)

⇒ P = (a+b)2(b+c)2(a+c)2

⇒ P là số chính phương (vì a,b,c∈Z)