K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Biến đổi :

\(VT=\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}=\frac{a}{b\left(a+b^2\right)}+\frac{b}{c\left(b+c^2\right)}+\frac{c}{a\left(c+a^2\right)}\)

\(=\frac{1}{b}\cdot\frac{a}{a+b^2}+\frac{1}{c}\cdot\frac{b}{b+c^2}+\frac{1}{a}\cdot\frac{1}{c+a^2}\)

\(=\frac{1}{b}\cdot\left(1-\frac{b^2}{a+b^2}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{b+c^2}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{c+a^2}\right)\)

Áp dụng BĐT Cô-si :

\(VT\ge\frac{1}{b}\cdot\left(1-\frac{b^2}{2b\sqrt{a}}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{2c\sqrt{b}}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{2a\sqrt{c}}\right)\)

\(=\frac{1}{b}-\frac{1}{2\sqrt{a}}+\frac{1}{c}-\frac{1}{2\sqrt{b}}+\frac{1}{a}-\frac{1}{2\sqrt{c}}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\cdot\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)

Áp dụng BĐT quen thuộc : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) và BĐT Cô-si ta có:

\(VT\ge\frac{9}{a+b+c}-\frac{1}{2}\cdot\left(\frac{\frac{1}{a}+1}{2}+\frac{\frac{1}{b}+1}{2}+\frac{\frac{1}{c}+1}{2}\right)\)

\(=\frac{9}{3}-\frac{1}{2}\cdot\left(\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}{2}\right)\ge3-\frac{1}{2}\cdot\left(\frac{\frac{9}{a+b+c}+3}{2}\right)\)

\(=3-\frac{1}{2}\cdot\left(\frac{\frac{9}{3}+3}{2}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

NV
21 tháng 3 2022

Ta có:

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

\(\ge2a+2b+2c+2ab+2bc+2ca=12\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(P\ge a^2+b^2+c^2\ge3\)

\(P_{min}=3\) khi \(a=b=c=1\)

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

22 tháng 12 2016

(Đề lừa người quá!)

\(c+ab=\left(a+b+c\right)c+ab=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\).

Biến đổi tương tự các tử số ta được BĐT: \(\frac{\left(b+c\right)\left(c+a\right)}{a+b}+\frac{\left(c+a\right)\left(a+b\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\).

Đặt \(x=a+b,y=b+c,z=c+a\). Ta có \(x+y+z=2\)

Ta cần CM: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge2\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge2xyz\)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=2xyz\)

Bài toán được chứng minh.

16 tháng 4 2019

Bạn Trần Quốc Đạt Giỏi hơn anh luôn ấy nha

nói thiệt chớ anh nhìn vào cũng loạn mắt lam ko nổi đấy nha

anh k cho Đạt 3 k