K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

\(a=x^2;b=y^2;c=z^2\)

\(P=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x^2-y^2\right)\left(y^2-z^2\right)\left(z^2-x^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y-z\right)\left(z-x\right)\left(z+x\right)\)

..............................

16 tháng 10 2016

a=x2;b=y2;c=z2 P=(a−b)(b−c)(c−a)=(x2−y2)(y2−z2)(z2−x2) =(x−y)(x+y)(y−z)(y−z)(z−x)(z+x) 

15 tháng 10 2015

1.Gọi số đó là a, thương của phép chia là q, ta có :

a : 64 = q (dư 32)

nên a = q . 64 + 32 

      a = (q . 82) + 32

Vì q . 8chia hết cho 8 ; 32 chia hết cho 8

nên a chia hết cho 8

Vậy số đó chia hết cho 8

15 tháng 10 2015

2. Gọi số cần tìm là b, thương của phép chia là r , ta có:

b : 28 = r (dư 17)

nên b = r . 28 + 17

      b = r . 14 . 2 + 17

Vì r . 14 . 2 chia hết cho 14 mà 17 không chia hết cho 14

nên b không chia hết cho 14 

6 tháng 6 2016

a;b;c là các số chính phương nên viết được dưới dạng: \(a=x^2;b=y^2;c=z^2\mid x;y;z\in Z\)

Do đó, \(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y+z\right)\left(z-x\right)\left(z+x\right)\)

  • Trong 3 số x;y;z có ít nhất 2 số có cùng tính chẵn hoặc lẻ. Suy ra Tổng và Hiệu 2 số có cùng tính chẵn (hoặc lẻ) đó là số chẵn. => \(M\vdots4\)(1)
  • Trong 3 số x;y;z nếu có 2 số nào có cùng số dư khi chia cho 3 thì hiệu của chúng sẽ chia hết cho 3 => \(M\vdots3\)(a)
  • Trong 3 số x;y;z nếu không có bất kỳ 2 số nào có cùng số dư khi chia cho 3 thì các số dư đó khác nhau và lần lượt là: 0;1;2. Khi đó tổng 2 số có số dư =1 và số có số dư bằng 2 sẽ chia hết cho 3 =>\(M\vdots3\)(b)
  • Từ (a) và (b) => \(M\vdots3\forall x;y;z\)(2)
  • Từ (1) và (2) =>\(M\vdots12\forall a;b;c\)(ĐPCM)
15 tháng 5 2018

Trả lời

Số chính phương chia 3 dư 0 hoặc 1

Số chính phương chia 4 dư 0 hoặc 1

Đặt A=(a-b)(b-c)(c-a)

Vì 1 số chính phuong chia 4 và 3 dư 0 hoặc 1

*)Vì a;b;c chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số cg số dư khi chia 3 

=> Hiệu của chúg chia hết cho 3

=> a-b; b-c hoặc c-a chia hết cho 3

=> A chia hết cho 3 (1)

*) Vì a;b;c chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số cg số dư khi chia cho 4

=> Hiệu của chúg chia hết cho 4

=> a-b; b-a; c-a chia hết cho 4

=>  A chia hết cho 4 (2)

Từ (1)(2)=> A chia hết chi 12 vì (3;4)=1

Vậy a;b;c là 3 số chính phương thì (a-b)(b-c)(c-a) chia hết cho 3 (đpcm)

15 tháng 5 2018

Ta có : C > A > B

*Cm  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 3

Vì một số chính phương chia cho 3 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 3 (*).

Tích  ( A - B ) ( B- C ) ( C  - A )  mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( *) thì có một hiệu chia hết cho 3 \(\Rightarrow\)  ( A - B ) ( B- C ) ( C  - A ) \(⋮3\left(1\right)\)

*Cm  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 4

Vì một số chính phương chia cho 4 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 4(2).

Tích  ( A - B ) ( B- C ) ( C  - A )  mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( 2) thì có một hiệu chia hết cho 4 \(\Rightarrow\)  ( A - B ) ( B- C ) ( C  - A ) \(⋮4\left(3\right)\)

Từ (1) và (3) suy ra : Tích ( A - B ) ( B- C ) ( C  - A ) chia hết cho 4 và 3 mà (4;3) =1    =>   ( A - B ) ( B- C ) ( C  - A ) chia hết cho 3.4 <=>  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 12 .

            Vậy bài toán được chứng tỏ

11 tháng 10 2015

c) Giải:  11a + 2b chia hết cho 12 (đề cho)            (1)

             11a + 2b + a + 34b

           = (11a + a) + ( 2b + 34b)

           =    12a     +       36b

    Vì: 12a chia hết cho 12, 36 chia hết cho 12

Suy ra:   12a  +   36b chia hết cho 12   (2)

Từ (1) và (2) suy ra : a + 34b chia hết cho 12

 

15 tháng 10 2015

gọi a = 12t + 7, b = 12k + 7 và x = 12m + 5 (t. k. m là các số tự nhiên)
a + b = 12( t + k +1) + 2 cái này phải chia cho 12 dư 2 mới đúng
a - b = 12(t - k) chia hết cho 12
b + c = 12(k + m + 1) chia hết cho 12
a + b + c = 12( t + k + m + 1) + 7 chia cho 12 dư 7
tương tự với a - b + c và a + b - c

đây nha

1 tháng 6 2018

gọi a = 12t + 7, b = 12k + 7 và x = 12m + 5 (t. k. m là các số tự nhiên)
a + b = 12( t + k +1) + 2 cái này phải chia cho 12 dư 2 mới đúng
a - b = 12(t - k) chia hết cho 12
b + c = 12(k + m + 1) chia hết cho 12
a + b + c = 12( t + k + m + 1) + 7 chia cho 12 dư 7
tương tự với a - b + c và a + b - c

đây nha