K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 10 2024

Lời giải:
Xét hiệu:

$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a^2-ab-ac}{(b+c)(a+b+c)}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}$

Vì $a,b,c$ là độ dài 3 cạnh trong một tam giác nên $a>0; a-(b+c)<0; b+c>0; a+b+c>0$

$\Rightarrow \frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}<0$

$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$

Hoàn toàn tương tự: $\frac{b}{a+c}< \frac{2b}{a+b+c}; \frac{c}{a+b}< \frac{2c}{a+b+c}$

Cộng theo vế các BĐT trên ta được:

$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2$
Ta có đpcm.

14 tháng 3 2018

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Xét hiệu: 

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)

Dễ thấy b - c < 0

\(c< a+b\le2b\)

=> 4b - c > 0

Q.E.D dấu "=" xảy ra khi a = b = c

20 tháng 11 2016

Áp dụng định lý Pi-ta-go đó 

21 tháng 11 2016

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

25 tháng 8 2018

a) Biến đổi biểu thức ban đầu tương đương: 

4abc > a[ a² - (b-c)²] +b[b² - (a-c)²] +c[c² - (a-b)²] 

<=> 4abc > a(a+b-c)(a+c-b) + b(b+c-a)(b+a-c) + c(c+b-a)(c+a-b) 

Đến đây thì đặt ẩn phụ kiểu quen thuộc rồi ;) 

Đặt a+b-c = x ; b+c-a =y ; c+a-b =z (x,y,z > 0 ) Thì a= (x +z)/2 ; b= (x+y/2) ; c= (y+z)/2 

Biểu thức trở thành: 

(x+y)(y+z)(z+x) > (x+z)xz + (x+y)xy + (y+z)yz 

Đơn giản rồi ; biểu thức này tương đương 2xyz > 0 (đúng với a,b,c là 3 cạnh của 1 tam giác ;) 

*Mở rộng thêm: Còn chứng minh được a^3 +b^3 +c^3 +3abc >= a²(b+c) +b²(a+c) +c²(b+a) > a^3 +b^3 +c^3 +2abc với a,b,c là 3 cạnh của 1 tam giác ;)