Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)
\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)
(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
bạn nhóm theo công thức : A2 -B2=(A+B).(A-B)
rồi dùng BĐT trong tam giác
ta có 4a2b2c2=(2bc)2
=(2bc)2-(b2+c2-a2)
dùng hằng đăng thức thứ 3 + hằng đẳng thức thứ 1 ta được
=[-(b-c)2+a2].[(b+c)2-a2]
<=>[a2-(b-c)2].[(b+c)2-a2]
=(a+c-b).(a+b-c).(b+c-a).(b+c+a)
dùng bất đẳng thức tam giác bạn tự kết luận nha
Bài này chỉ chứng minh được khi 2 tam giác vuông với 2 cạnh là a và b
Ta có :
\(c^2+b^2=c^2\)
\(\Rightarrow\)\(a^2+b^2-c^2=0\) ( 1 )
Thay 1 vào :
\(4a^2b^2-0\)
\(=4a^2b^2\)
\(\Rightarrow\)
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0