\(a^2+b^2+c^2+2ab...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

Do a;b;c là 3 cạnh của tam giác nên: a + b + c = 2

Áp dụng bất đẳng thức của tam giác:

\(\Rightarrow\)a < b + c

\(\Rightarrow\)a + a < a + b + c

\(\Rightarrow\)2a < 2 \(\Rightarrow\)a < 1

Làm tương tự; ta chứng minh được b < 1; c < 1

\(\Rightarrow\)(1 - a)(1 - b)(1 - c) > 0

\(\Rightarrow\)(1 - a - b + ab)(1 - c) > 0

\(\Rightarrow\)1 - a - b + ab - c + ac + bc - abc > 0

\(\Rightarrow\)1 - (a + b + c) + (ab + ac + bc) > abc

\(\Rightarrow\)2[1 - (a + b + c) + (ab + ac + bc)] > 2abc

\(\Rightarrow\)2 - 2(a + b + c) + 2(ab + ac + bc) - 2abc > 0

\(\Rightarrow\)2abc + (a + b + c)^2 - 2ab - 2ac - 2bc < 2 (vì a + b + c = 2)

\(\Rightarrow\)\(a^2+b^2+c^2+2abc< 2\)(ĐPCM)

4 tháng 11 2017

CMR là chuẩn mẹ rồi!

khà khà.........................

12 tháng 3 2018

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 3 2018

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

17 tháng 12 2017

Áp dụng BĐT tam giác, ta có: 

         \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\Rightarrow\hept{\begin{cases}2a< a+b+c\\2b< a+b+c\\2c< a+b+c\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}2a< 6\\2b< 6\\2c< 6\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\b< 3\\c< 3\end{cases}\Rightarrow}}\hept{\begin{cases}3-a>0\\3-b>0\\3-c>0\end{cases}}\)

Áp dụng BĐT Cauchy cho bộ ba số thực không âm, ta có: 

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\frac{3-a+3-b+3-c}{3}\right)^3=1\)

\(\Leftrightarrow27-9\left(a+b+c\right)+3\left(ab+bc+ca\right)-abc\le1\)

\(\Leftrightarrow abc\ge27-9.6+3\left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc\ge-56+6\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+3.2\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3.36-56=\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge52\)

Dấu \("="\) xảy ra khi  \(a=b=c=2\)

Vậy \(3\left(a^2+b^2+c^2\right)+2abc\ge52\)

17 tháng 12 2017

Lớp 8 chưa học bất dẳng thức Cauchy nên mik sẽ ko tính vs lại mik làm đc rồi và cảm ơn nha

AH
Akai Haruma
Giáo viên
11 tháng 2 2019

Lời giải:
Áp dụng BĐT AM-GM cho các số dương:
\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((a+b-c)(c+a-b)\leq \left(\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2\)

Nhân theo vế và rút gọn :

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

\(\Leftrightarrow (6-2c)(6-2a)(6-2b)\leq abc\) (do $a+b+c=6$)

\(\Leftrightarrow 8[27-9(a+b+c)+3(ab+bc+ac)-abc]\leq abc\)

\(\Leftrightarrow 8(-27+3(ab+bc+ac)-abc)\leq abc\)

\(\Leftrightarrow abc\geq \frac{8}{3}(ab+bc+ac)-24\)

Do đó:

\(3(a^2+b^2+c^2)+2abc\geq 3(a^2+b^2+c^2)+\frac{16}{3}(ab+bc+ac)-48\)

\(=3(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-48=60-\frac{2}{3}(ab+bc+ac)\)

Mà theo hệ quả của BĐT AM-GM \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=12\)

\(\Rightarrow 3(a^2+b^2+c^2)+2abc\geq 60-\frac{2}{3}.12=52\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

25 tháng 11 2017

Có a,b,c là độ dài 3 cạnh 1 tam giác.

2 tháng 4 2019

Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3

(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)

Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)

\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )

Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=>  \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)

=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)

Mình mới nghĩ được vậy thôi bạn à!