K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\frac{ab+bc+ca}{abc}=0\)

\(ab+bc+ca=0\Leftrightarrow\hept{\begin{cases}ab=-bc-ca\\bc=-ab-ca\end{cases},,,ca=-ab-bc}\)

\(\frac{a^2}{a^2+bc-ab-ca}=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}=\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)

tương tự 

\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(P=\frac{a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}\)

có \(a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

\(P=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}=1\)

19 tháng 8 2019

Tham khảo tại đây : Câu hỏi của Huỳnh Kim Bích Ngọc - Toán lớp 8 - Học toán với OnlineMath

26 tháng 8 2015

Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9.\)

15 tháng 5 2016
Dùng Svaxơ là ra nha bạn
21 tháng 8 2015

Lần sau em viết đề cẩn thận hơn nhé, dấu lớn hơn đúng ra phải là lớn hơn hoặc bằng và không có ẩn d.

Bài này sử dụng bất đẳng thức Cauchy-Schwartz thôi (Nếu bạn chưa quen, thì xem lại phát biểu và chứng minh ở đây: http://olm.vn/hoi-dap/question/174274.html ).

Ta có \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=1.\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c.\)

29 tháng 5 2018

Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)

\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)

24 tháng 10 2019

tìm trên câu hỏi tương tự bạn sẽ có lời giải của Nguyễn Việt Lâm

5 tháng 11 2016

Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)

Theo giả thiết : \(A+B+C=1\)

Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)

\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)

\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)

\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)

\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)

\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)

Có 3 khả năng xảy ra :

TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)

TH2 :

\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)

TH3:

\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)

\(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)