K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

GTNN = -10

cách làm

M = ...

= 2(a2+b2)+a2+b2+c2

= 2(a2+b2)+(a+b+c)2-2(ab+bc+ac) (1)

mà ab+bc+ac=5

=> (1) = 2(a2+b2)+(a+b+c)2-10

có a2 và b2 \(\ge\) 0

2 >0

(a+b+c)2 \(\ge\) 0

=> (1) \(\ge\) -10

=> M min = -10

hơi sơ sài nhỉ, ko hiểu thì hỏi, tôi chỉ cho

25 tháng 10 2016

mình cảm ơn nha

 

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

đề có sai ko bạn ?

19 tháng 6 2018

mình cũng ko bt nữa.Bn giúp mình vs ạ

25 tháng 6 2019

a)Ta có: a^2 + b^2 + c^2 = ab + bc + ca 
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca 
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0 
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1) 
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c. 
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2) 
Từ (1) và (2) khẳng định dấu "=" khi: 
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c 
Vậy a=b=c.

b)Ta có: 
A = (5a – 3b + 8c)(5a – 3b –8c) 
= (5a –3b)² – (8c)² 
= (25a² – 30ab +9b²) – 64c² 
Mà theo đề thì 4c² = a² –b² 
Nên ta suy ra: 
A = (25a² – 30ab +9b²) – 16(a² –b²) 
= 9a² –30ab +25b² 
= (3a –5b)² 
25 tháng 6 2019

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)