Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b+cbc=2a�+���=2�
2bc=a(b+c)2��=�(�+�)
bc+bc=ab+ac��+��=��+��
bc−ab=ac−bc��−��=��−��
b(c−a)=c(a−b)�(�−�)=�(�−�)
⇒bc=a−bc−a⇒��=�−��−� ( đpcm )
\(\frac{b+c}{bc}=\frac{2}{a}\) <=> \(\frac{1}{b}+\frac{1}{c}=\frac{2}{a}\)
<=> \(\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{a}=0\) <=> \(\frac{a-b}{ab}+\frac{a-c}{ac}=0\)
<=> \(\frac{a-b}{ab}=\frac{c-a}{ac}\)
=> \(\frac{ab}{ac}=\frac{a-b}{c-a}\)<=> \(\frac{b}{c}=\frac{a-b}{c-a}\) => Đpcm
Có \(\frac{b+c}{bc}=\frac{2}{a}\)
\(=>2bc=a\left(b+c\right)\)
\(=>bc+bc=ab+ac\)
\(=>bc-ab=ac-bc\)
\(=>b\left(c-a\right)=c\left(a-b\right)\)
\(=>\frac{b}{c}=\frac{a-b}{c-a}\)( đpcm)
\(\frac{b+c}{bc}=\frac{2}{a}\)
\(2bc=a\left(b+c\right)\)
\(bc+bc=ab+ac\)
\(bc-ab=ac-bc\)
\(b\left(c-a\right)=c\left(a-b\right)\)
\(\Rightarrow\frac{b}{c}=\frac{a-b}{c-a}\) ( đpcm )
cho a,b,c đôi một khác nhau thỏa mãn : (a+b+c)^2=a^2+b^2+c^2.
rút gọn P=a^2/a^2+2bc +b^2/b^2+2ac + c^2/c^2+2ab
cho c^2+2ab-2ac-2bc=0
tính P=(a^2+(a-c)^2)/(b^2+(b-c)^2)
cho a+b+c=0 và khác 0
rút gọn: A=a^2/a^2-b^2-c^2 +b^2/b^2-c^2-a^2 +c^2/c^2-a^2-b^2
Làm vô đây đài nhưng làm trog giấy ngắn lắm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
Tk mk nha