Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b+c-c}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\Leftrightarrow (a+b).\frac{c(c+a)+b(a+c)}{abc(a+b+c)}=0\)
\(\Leftrightarrow \frac{(a+b)(b+c)(c+a)}{abc(a+b+c)}=0\Rightarrow (a+b)(b+c)(c+a)=0\)
\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Ta xét TH $a+b=0\Rightarrow a=-b$, các TH khác làm tương tự:
Khi đó: \(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}=\frac{1}{c^{2017}}\)
Và: \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\)
Do đó: \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)
Ta có đpcm.
Bài 2:
Ta có:
Áp dụng công thức quen thuộc (suy ra trực tiếp từ hằng đẳng thức đáng nhớ): \(x^3+y^3=(x+y)^3-3xy(x+y)\) ta có:
\(a^3+b^3=2c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3c^3\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3=3c^3\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b)=3c^3\)
\(\Leftrightarrow (a+b+c)^3-3(a+b).c(a+b+c)-3ab(a+b)=3c^3\)
\(\Leftrightarrow (a+b+c)^3=3c^3+3ab(a+b)+3(a+b)c(a+b+c)\vdots 3\)
Mà $3\in\mathbb{P}$ nên \(\Rightarrow a+b+c\vdots 3\)
Ta có đpcm.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Cho 3 số a,b,c thỏa mãn ab + bc + ca = 2017abc và 2017(a + b + c) = 1
Tính A = a2017 + b2017 + c2017
- Nếu một trong các số a;b;c bằng 0, giả sử là a
\(\Rightarrow bc=0\Rightarrow\left\{{}\begin{matrix}b=0\\c=\frac{1}{2017}\end{matrix}\right.\)
\(\Rightarrow A=\frac{1}{2017^{2017}}\)
- Nếu a;b;c đều khác 0
\(ab+bc+ca=2017abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\\\frac{1}{a+b+c}=2017\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b;c=\frac{1}{2017}\\b=-c;a=\frac{1}{2017}\\c=-a;b=\frac{1}{2017}\end{matrix}\right.\)
\(\Rightarrow A=\frac{1}{2017^{2017}}\)
Như vậy trong mọi trường hợp ta luôn có \(A=\frac{1}{2017^{2017}}\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)
\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)
\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)
\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)
\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)
p/s: dài nhỉ =)
Rúp mình với a