Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).
BĐT trên dễ dàng chứng minh được bằng cách sử dụng phép biến đổi tương đương.
Do đó: \(\left(\sum\sqrt{a^2+2bc}\right)^2\le3\left(\sum a^2+2\sum bc\right)=3\left(a+b+c\right)^2\)
\(\Rightarrow\sum\sqrt{a^2+2bc}\le\sqrt{3}\left(a+b+c\right)\)
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\([\sqrt{c(a-c)}+\sqrt{c(b-c)}]^2\leq [c+(b-c)][(a-c)+c]=ab\)
\(\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}\) (đpcm)
Dấu "=" xảy ra khi $a=b=2c$
a/ Bình phương 2 vế:
\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ Bình phương:
\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)
\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)
Bđt cần CM tương đương với:
\(\left(\sqrt{a^2+15bc}+\sqrt{b^2+15ca}+\sqrt{c^2+15ab}\right)^2\le3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\)
Ta cần cm \(3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\le16\left(a+b+c\right)^2\)
Rút gọn ta đc \(ab+bc+ca\le a^2+b^2+c^2\)
Bđt sau cùng đúng
Ta đc đpcm