Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
BĐT:\(a,b,c>0\Rightarrow\left(ab+bc+ac\right)\ne0\)
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\)
\(\ge\dfrac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)
cho a,b,c>0 và a+b+c=3
CMR: \(\dfrac{a}{b^3+ab}+\dfrac{b}{c^3+bc}+\dfrac{c}{a^3+ca}\ge\dfrac{3}{2}\)
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
Ta có :
\(VT=\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
Theo BĐT Cauchy ta có :
\(\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)
Theo BĐT Cô - Si ta lại có : \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}=\dfrac{1}{2}\)
Ta có \(\dfrac{ab}{c+3}=\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự: \(\dfrac{bc}{a+3}\le\dfrac{1}{4}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\); \(\dfrac{ac}{b+3}\le\dfrac{1}{4}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right)\)
Cộng vế với vế:
\(D\le\dfrac{1}{4}\left(\dfrac{ab+bc}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{bc+ac}{a+b}\right)=\dfrac{1}{4}\left(a+b+c\right)=\dfrac{3}{4}\)
\(\Rightarrow D_{max}=\dfrac{3}{4}\) khi \(a=b=c=1\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(VT=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ac+ab+bc+ac+a^2+b^2+c^2}+\dfrac{7}{ab+bc+ac}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\)
Áp dụng bất đẳng thức AM-GM cho 2 số dương:
\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)
Ta có: \(\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
Áp dụng BĐT Cauchy-Schwarz ta có
BT\(\ge\)\(\frac{\left(1+1+1\right)^2}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}=\frac{9}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}\)
\(=\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2}+\frac{7}{ab+bc+ac}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}+\frac{7}{ab+bc+ac}\)\(=1+\frac{7}{ab+bc+ac}\)
Ta lại có ab+bc+ac =< (a+b+c)^2/3 =3
\(\Rightarrow BT\ge1+\frac{7}{3}=\frac{10}{3}\)
Vậy GTNN là \(\frac{10}{3}\)khi a=b=c=1
Theo Cô-si: \(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^4b}{b}}=2a^2\)
Tương tự có: \(\dfrac{b^3}{c}+bc\ge2b^2\) ; \(\dfrac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\) P + ab+bc+ca \(\ge\) 2 (a2+b2+c2)
Mà a2+b2+c2 \(\ge\) ab+bc+ca
\(\Rightarrow\) P+ ab+bc+ca \(\ge\) a2+b2+c2 +ab+bc+ca
\(\Leftrightarrow\) P \(\ge\) a2+b2+c2
\(\Leftrightarrow\) 3P \(\ge\) 2( a2+b2+c2)+( a2+b2+c2)
Có: a2+b2+c2 \(\ge\)ab+bc+ca
\(\Rightarrow\)3P\(\ge\) 2(ab+bc+ca) + a2+ 1 +b2 +1+ c2 +1 -3
Lại có: a2+1\(\ge\) 2a ; b2+1\(\ge\) 2b ; c2+a\(\ge\) 2c
\(\Rightarrow\) 3P \(\ge\) 2(ab+bc+ca) +2a+2b+2c - 3
\(\Leftrightarrow\)3P\(\ge\) 2(ab+bc+ca +a+b+c) -3 = 2.6-3=9
\(\Leftrightarrow\)P\(\ge\)3
Vậy Pmin = 3
Dấu "=" xảy ra\(\Leftrightarrow\) a=b=c=1
https://hoc24.vn/hoi-dap/question/470378.html