K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)

\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012

\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012

Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)

Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)

\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)

\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)

\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)

28 tháng 1 2019

\(\text{Ta có: }\frac{a^2}{1}+\frac{1}{a^2}\ge2\)Dấu = xảy ra khi a=1

cách c/m:

\(\text{Xét }a^2=1\Leftrightarrow\frac{a^2}{1}+\frac{1}{a^2}=2\)

\(\text{Xét }a^2>1.\text{Đặt }a^2=k+1\left(k>0\right)\text{ta có:}\frac{k+1}{1}+\frac{1+k-k}{k+1}=\frac{k}{1}+1+1-\frac{k}{k+1}=2+\frac{k^2}{k+1}>2\left(\text{Vì }k>0\right)\)

\(\text{Xét }a^2< 1.\text{Đặt }a^2=1-k,\text{ta có: }\frac{1-k}{1}+\frac{1-k+1}{1-k}=1-\frac{k}{1}+1+\frac{1}{1-k}=2+\frac{k^2-k+1}{1-k}\)

\(k^2-k+\frac{1}{4}+\frac{3}{4}=\left(k-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(1)

\(1-k=a^2,a^2>0\Rightarrow1-k>0\)(2)

từ (1) và (2) \(\Rightarrow\frac{k^2-k+1}{1-k}>0\Rightarrow2+\frac{k^2-k+1}{1-k}>2\)

\(\text{ }\frac{b^2}{1}+\frac{1}{b^2}\ge2\)Dấu = xảy ra khi b=1

\(\frac{c^2}{1}+\frac{1}{c^2}\ge2\) Dấu = xảy ra khi c=1

\(\Leftrightarrow\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+\left(c^2+\frac{1}{c^2}\right)\ge6\)

Dấu = xảy ra khi \(a=b=c=1\)

??? ghi sai đề ko bạn? =3 chứ ?

p/s: sai sót bỏ qua >:

28 tháng 1 2019

:V quên

dấu = xảy ra khi \(a=b=c=\pm1\)

số mũ chẵn =.='

NV
27 tháng 1 2019

Bên dưới là chứng minh bằng 3 hay 6 bạn? Sao bằng 6 được nhỉ?

a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0

\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

M  tương tự

25 tháng 9 2017

Chebyshev, Vasc là cái gì vậy ._. lớp 9 học cái đó rồi á ._.

25 tháng 9 2017

ahihi tui nhìn nhầm cách đó sai rồi cho qua đi :))

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:
\(a^2+2bc-1=a^2+2bc-(ab+bc+ac)=a^2+bc-ab-ac\)

\(=a(a-b)-c(a-b)=(a-c)(a-b)\)

\(b^2+2ac-1=b^2+ac-ab-bc=(b-a)(b-c)\)

\(c^2+2ab-1=(c-a)(c-b)\)

Do đó:

\(P=(a-b)(a-c)(b-c)(b-a)(c-a)(c-b)\)

\(=-[(a-b)(b-c)(c-a)]^2\leq 0\)

Vậy $P_{\max}=0$

Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$

6 tháng 1 2020

sai đề : Tính giá trị nhỏ nhất