\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\)\(\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\)\(\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)(đpcm)

Dau "=" xay ra khi a=b=c

AH
Akai Haruma
Giáo viên
23 tháng 2 2017

Dùng Cauchy-Schwarz ngon rồi nhưng nếu bạn muốn cách nữa thì dùng AM-GM:

\(\frac{a^3}{b}+ab\geq 2\sqrt{a^4}=2a^2\). Tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\) \((1)\)

Có BĐT quen thuộc là \(a^2+b^2+c^2\geq ab+bc+ac\) \((2)\)

BĐT nàyđúng vì nó tương đương \((a-b)^2+(b-c)^2+(c-a)^2\geq 0\)

Từ \((1),(2)\Rightarrow \text{VT}\geq ab+bc+ac\) (đpcm)

23 tháng 2 2017

a3/b + ab >= 2a2 (AM-GM) 

tương tự VT >= 2(a2+b2+c2)-(ab+bc+ac )

có a2+b2+c2 >= ab+bc+ac (AM-GM) 

=>VT >= 2(ab+bc+ac)-(ab+bc+ac) >= ab+bc+ac 

22 tháng 2 2017

Áp dụng BĐT Chwarz có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Dễ dàng CM được BĐT sau: \(a^2+b^2+c^2\ge ab+bc+ca\)

Ta có: \(\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

=> ĐPCM

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

29 tháng 6 2017

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)

\(=\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

\(\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)

13 tháng 10 2017

áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\)  (vì b>0)

\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\)     (1)

c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\)  (2)

\(\frac{c^3}{a}+a^2\ge c^2+ca\)    (3)

Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm

13 tháng 10 2017

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

15 tháng 8 2019

\(b^2+3=b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

Tương tự với các mẫu thức khác, ta có :

\(P=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\)

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3\left(b+c\right)\left(a+b\right)}{64\left(b+c\right)\left(a+b\right)}}=\frac{3a}{4}\)

Tương tự ta có :

\(\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c+a}{8}+\frac{b+c}{8}\ge\frac{3b}{4}\)

\(\frac{c^3}{\left(c+a\right)\left(a+b\right)}+\frac{c+a}{8}+\frac{a+b}{8}\ge\frac{3c}{4}\)

Cộng theo vế của các bđt ta được :

\(P+2\left(\frac{a+b}{8}+\frac{b+c}{8}+\frac{c+a}{8}\right)\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow P\ge\frac{3\left(a+b+c\right)}{4}-\left(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\right)\)

\(\Leftrightarrow P\ge\frac{3\left(a+b+c\right)}{4}-\frac{2\left(a+b+c\right)}{4}\)

\(\Leftrightarrow P\ge\frac{a+b+c}{4}\)

Ta có bđt quen thuộc : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3\cdot3=9\)

\(\Leftrightarrow a+b+c\ge3\)

Do đó \(P\ge\frac{3}{4}\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)