K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Hướng dẫn:

\(a^3+b^3+c^3=\frac{a^3}{2}+\frac{a^3}{2}+\frac{1}{2}+\frac{b^3}{2}+\frac{b^3}{2}+\frac{1}{2}+\frac{c^3}{2}+\frac{c^3}{2}+\frac{1}{2}-\frac{3}{2}\)

\(\ge\frac{3a^2}{2}+\frac{3b^2}{2}+\frac{3c^2}{2}-\frac{3}{2}=\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\) (Cauchy cho 3 số không âm )

=> \(3\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\)

=> \(a^2+b^2+c^2\le3\).

Dấu "=" <=> a=b=c

\(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\le3\) 

=> \(a+b+c\le3\)

Dấu "=" xảy ra <=> a = b = c.

NV
19 tháng 4 2019

Trước hết với x; y dương ta có \(x^3+y^3\ge xy\left(x+y\right)\)

Thật vậy, \(\) \(x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Áp dụng: \(\left\{{}\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\a^3+c^3\ge ac\left(a+c\right)\end{matrix}\right.\) \(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\)

Mặt khác:

\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\le a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)\)

\(\Rightarrow a^2+b^2+c^2\le a^3+b^3+c^3\)

Dấu "=" khi \(a=b=c=1\)

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a

6 tháng 5 2018

từ giả thuyết suy ra : abc >0

có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0

\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)

Cộng a2+b2+cvào (1)

2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2

(a+b+c)2-4\(\ge\)a2+b2+c2

thay a+b+c=3 vào

9-4\(\ge\)a2+b2+c2

\(\ge\)a2+b2+c2

a2+b2+c\(\le\)5

6 tháng 5 2018

cauhc lop may

22 tháng 8 2019

+) a2+b2+c2\(\ge\)3

Đặt a-1 =x , b-1 =y,c-1=z

\(\Rightarrow\)x,y,z \(\in\)[-1;1] và x+y+z=0

pttt: (x+1)2+(y+1)2+(z+1)2\(\ge\)3

\(\Leftrightarrow\)....\(\Leftrightarrow\)x2+y2+z2+2(x+y+z)+3\(\ge\)3

\(\Leftrightarrow\)x2+y2+z2+3\(\ge\)3

\(\Leftrightarrow\)x2+y2+z2\(\ge\)0 (luôn đúng với mọi x,y,z)

+)a2+b2+c2\(\le\)5

Ta có a,b,c\(\in\)[0;2]\(\Rightarrow\)2-a\(\ge\)0 , 2-b\(\ge\)0 , 2-c\(\ge\)0

\(\Leftrightarrow\)(2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)2ab+2ac+2bc\(\ge\)4(a+b+c)+abc-8

\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)12 + abc -8=4+abc (vì a+b+c=3)

Mà 4+abc\(\ge\)4 (vì a,b,c\(\in\)[0;2])

\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)4

\(\Leftrightarrow\)(a+b+c)2\(\ge\)4 +a2+b2+c2

mà a+b+c=3

\(\Leftrightarrow\)a2+b2+c2\(\le\)33-4=5

Dấu '=' xảy ra khi (a,b,c)=(0,1,2)và hoán vị vòng quanh

Vậy bdt được cm

19 tháng 3 2018

8 hay 6???

19 tháng 3 2018

6

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM