Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết với x; y dương ta có \(x^3+y^3\ge xy\left(x+y\right)\)
Thật vậy, \(\) \(x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Áp dụng: \(\left\{{}\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\a^3+c^3\ge ac\left(a+c\right)\end{matrix}\right.\) \(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\)
Mặt khác:
\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\le a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)\)
\(\Rightarrow a^2+b^2+c^2\le a^3+b^3+c^3\)
Dấu "=" khi \(a=b=c=1\)
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5
+) a2+b2+c2\(\ge\)3
Đặt a-1 =x , b-1 =y,c-1=z
\(\Rightarrow\)x,y,z \(\in\)[-1;1] và x+y+z=0
pttt: (x+1)2+(y+1)2+(z+1)2\(\ge\)3
\(\Leftrightarrow\)....\(\Leftrightarrow\)x2+y2+z2+2(x+y+z)+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2\(\ge\)0 (luôn đúng với mọi x,y,z)
+)a2+b2+c2\(\le\)5
Ta có a,b,c\(\in\)[0;2]\(\Rightarrow\)2-a\(\ge\)0 , 2-b\(\ge\)0 , 2-c\(\ge\)0
\(\Leftrightarrow\)(2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)2ab+2ac+2bc\(\ge\)4(a+b+c)+abc-8
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)12 + abc -8=4+abc (vì a+b+c=3)
Mà 4+abc\(\ge\)4 (vì a,b,c\(\in\)[0;2])
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)4
\(\Leftrightarrow\)(a+b+c)2\(\ge\)4 +a2+b2+c2
mà a+b+c=3
\(\Leftrightarrow\)a2+b2+c2\(\le\)33-4=5
Dấu '=' xảy ra khi (a,b,c)=(0,1,2)và hoán vị vòng quanh
Vậy bdt được cm
a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)
CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)
c/CM: \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)
d/Ta xét hiệu: \(a^4-4a+3\)
\(=a^4-2a^2+1+2a^2-4a+2\)
\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)
Suy ra BĐT luôn đúng
e/Ta xét hiệu:( Làm nhanh)
\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)
f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)
\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)
Mà \(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)
Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)
g/Làm rồi..xem lại trong trang cá nhân
h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)
\(=a^5b+ab^5-a^2b^4-a^4b^2\)
\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)
\(=ab\left(a^2-b^2\right)\left(a-b\right)\)
\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)
Suy ra ĐPCM
Hướng dẫn:
\(a^3+b^3+c^3=\frac{a^3}{2}+\frac{a^3}{2}+\frac{1}{2}+\frac{b^3}{2}+\frac{b^3}{2}+\frac{1}{2}+\frac{c^3}{2}+\frac{c^3}{2}+\frac{1}{2}-\frac{3}{2}\)
\(\ge\frac{3a^2}{2}+\frac{3b^2}{2}+\frac{3c^2}{2}-\frac{3}{2}=\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\) (Cauchy cho 3 số không âm )
=> \(3\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\)
=> \(a^2+b^2+c^2\le3\).
Dấu "=" <=> a=b=c
\(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\le3\)
=> \(a+b+c\le3\)
Dấu "=" xảy ra <=> a = b = c.