Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\frac{\left(ab+bc+ac\right)^2}{ab+bc+ca}=ab+bc+ac\)
\("="\Leftrightarrow a=b=c\)
\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
Sử dụng bđt Côsi:
\(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)
Tương tự và suy ra:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Thu gọn lại, ta có đpcm.
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
Cm tương tự :
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
Cộng vế ta đc :
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
Mặt khác :
a^2+b^2+c^2>=ab+bc+ca
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca Dấu
= xảy ra khi a=b=c
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có:
\(\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}=\frac{ab\left(a^2-b^2\right)}{a^3+b^3}=\frac{ab\left(a-b\right)}{a^2-ab+b^2}=\frac{a-b}{\frac{a}{b}+\frac{b}{a}-1}\ge\frac{a-b}{\frac{a}{b}+\frac{a}{a}-1}=\frac{b\left(a-b\right)}{a}\)
\(\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}=\frac{bc\left(b^2-c^2\right)}{b^3+c^3}=\frac{bc\left(b-c\right)}{b^2-bc+c^2}=\frac{b-c}{\frac{b}{c}+\frac{c}{b}-1}\ge\frac{b-c}{\frac{a}{c}+\frac{b}{b}-1}=\frac{c\left(b-c\right)}{a}\)
\(\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}=\frac{ca\left(c^2-a^2\right)}{c^3+a^3}=\frac{ca\left(c-a\right)}{c^2-ca+a^2}=\frac{c-a}{\frac{c}{a}+\frac{a}{c}-1}\ge\frac{c-a}{\frac{a}{c}+\frac{a}{a}-1}=\frac{c\left(c-a\right)}{a}\)
\(\Rightarrow\frac{a^3b}{a^3+b^3}-\frac{ab^3}{a^3+b^3}+\frac{b^3c}{b^3+c^3}-\frac{bc^3}{b^3+c^3}+\frac{c^3a}{c^3+a^3}-\frac{ca^3}{c^3+a^3}\ge\frac{b\left(a-b\right)+c\left(c-a\right)+c\left(b-c\right)}{a}=\frac{ab-b^2-ac+bc}{a}=\frac{\left(a-b\right)\left(b-c\right)}{a}\ge0\)
\(\Leftrightarrow\frac{a^3b}{a^3+b^3}+\frac{b^3c}{b^3+c^3}+\frac{c^3a}{c^3+a^3}\ge\frac{ab^3}{a^3+b^3}+\frac{bc^3}{b^3+c^3}+\frac{ca^3}{c^3+a^3}\left(đpcm\right)\)
By Cauchy-Schwarz, we have:
\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)
We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)
\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)
By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)
So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)
\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)
It is true by AM-GM ineq', so we have Q.E.D.
P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc