Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\)
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}=2\)
Suy ra:
\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}+3\ge2+2+2+3=9\)
Dấu "=" xảy ra khi: a = b = c
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≥ \(\dfrac{9}{a+b+c}\)
⇔ \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}\left(a+b+c\right).\dfrac{9}{a+b+c}\)
⇔ \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}9\)
\("="\text{⇔}a=b=c\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Học mỗi cái \(a+b\ge2\sqrt{ab}\) này thôi hả. Không sao a chiều được
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
\(\ge3+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}+2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}\)
\(=3+2+2+2=9\)
Xong.
C-S kind ENgel \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\Rightarrow DPCM\)
\(a+b+c\le1\) hoặc \(a+b+c=1\) nhá
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}=9\)
Đẳng thức xảy ra khi ..........
Lời giải:
Ta có:
\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)
Tiếp tục áp dụng AM-GM:
\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)
\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)
\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)
Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)
Mà \(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)
hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) đúng
Ta có đpcm.
Lời giải:
Từ \(a+b+c\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c\geq \frac{ab+bc+ac}{abc}\Rightarrow abc(a+b+c)\geq ab+bc+ac\)
\(\Rightarrow a^2b^2c^2(a+b+c)^2\geq (ab+bc+ac)^2(1)\)
Áp dụng BĐT AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\)
\(b^2c^2+c^2a^2\geq 2abc^2\)
\(a^2b^2+c^2a^2\geq 2a^2bc\)
Cộng theo vế, rút gọn \(\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Rightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)
Từ \((1);(2)\Rightarrow a^2b^2c^2(a+b+c)^2\geq 3abc(a+b+c)\)
\(\Rightarrow abc(a+b+c)\geq 3\Rightarrow a+b+c\geq \frac{3}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Áp dụng BĐT cauchy ngược dấu ta có:
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Chứng minh tương tự ta có:
\(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
Từ đó ta có: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}=\)\(=3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\left(đpcm\right)\)
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\) ≥ \(\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+3}=\dfrac{9}{a^2+b^2+c^2+3}\left(1\right)\)
Ta có BĐT : \(a^2+b^2+c^2\text{≥}ab+bc+ac\)
⇔ \(3\left(a^2+b^2+c^2\right)\text{≥}\left(a+b+c\right)^2\)
⇔ \(a^2+b^2+c^2\text{≥}\dfrac{9}{3}=3\left(2\right)\)
Từ ( 1 ; 2 ) ⇒ đpcm .
"=" ⇔ \(a=b=c=\dfrac{1}{3}\)
Áp dụng AM-GM
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3.\dfrac{1}{\sqrt[3]{abc}}=9\)
\(\rightarrow1.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
vậy ta có điều phải chứng minh
Dấu "=" \(a=b=c=\dfrac{1}{3}\)
Áp dụng svac-xơ:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=9\)
Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{3}\)
C2: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)
\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)
\(\ge3+2+2+2=9\) (theo cosi)
Dấu = xảy ra <=>\(a=b=c=\dfrac{1}{3}\)