Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta sẽ chứng minh:\(P\le\frac{5}{8}\Leftrightarrow5-8P=5+8abc-8\left(ab+bc+ca\right)\ge0\)
Ta có: \(5-8P=\frac{4ab\left[4\left(a+2bc-b-c\right)^2+\left(2c-1\right)^2\right]+c\left(2b-1\right)^2\left[4\left(a+b-c\right)^2+1\right]}{4ab+c\left(2b-1\right)^2}\ge0\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Theo nguyên lý Dirichlet, trong ba số 2a - 1; 2b - 1; 2c - 1 tồn tại ít nhất hai số cùng dấu
Giả sử \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\)
\(\Leftrightarrow4abc\ge2ac+2bc-c\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)
Khi đó thì\(P=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)
\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c^2-c+\frac{1}{4}\right)\)\(+\frac{1}{8}\)
\(=\frac{5}{8}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2\le\frac{5}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Với ab + bc + ca = 1 thì:
\(Q=\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}=\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)(Theo BĐT Cô - si)
\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{b+c}{2\left(b+c\right)}+\frac{2\left(a+c\right)}{a+c}}{2}=\frac{2+\frac{1}{2}+2}{2}=\frac{9}{4}\)
Đẳng thức xảy ra khi a = b = c = 1
\(Q=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\) chứ?
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).
Do đó đặt \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:
Cho \(y^2+5x=24\), tìm max:
\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)
\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)
\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)
Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)
Và dễ dàng chứng minh \(ab+bc+ca\le3\)
Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).
Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)
Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.
Khi đó P = 3. Vậy...
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Giả sử \(c=min\left\{a,b,c\right\}\Rightarrow1=a^2+b^2+c^2+2abc\ge2c^3+3c^2\Rightarrow c\le\frac{1}{2}\)
Chọn t > 0 thỏa mãn: \(\hept{\begin{cases}2t^2+c^2+2t^2c=1\left(1\right)\\2t^2+c^2+2t^2c=a^2+b^2+c^2+2abc\left(2\right)\end{cases}}\) (từ (1) ta mới có (2):v)
(2) \(\Rightarrow2c\left(t^2-ab\right)=a^2+b^2-2t^2\).
Ta thấy rằng, nếu\(t^2< ab\) thì:\(2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (mâu thuẫn).
Vì vậy: \(t^2\ge ab\Rightarrow a^2+b^2\ge2t^2\). Bây giờ đặt P = f(a;b;c)
Xét: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\left(c-1\right)\left(t^2-ab\right)+c\left(a+b-2t\right)\)
\(=\left(c-1\right)\left(t^2-ab\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)\(=\left(c-1\right)\left(t^2-ab\right)+\frac{2c^2\left(t^2-ab\right)-2c\left(t^2-ab\right)}{a+b+2t}\)
\(=\left(c-1\right)\left(t^2-ab\right)\left(1+\frac{2c}{a+b+2t}\right)\le0\)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;1-2t^2\right)\).
\(=\frac{1}{8}\left(2c-1\right)^2\left[\left(2c-1\right)^2-6\right]+\frac{5}{8}\le\frac{5}{8}\)
Cách rất dài và hại não, tối rồi em lười check lại quá:((