\(\frac{1}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

10 tháng 9 2016

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

11 tháng 10 2020

THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!

11 tháng 10 2020

vậy em giải giùm chị nhé

30 tháng 5 2018

UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)

Tương tự cộng lại là xong

29 tháng 5 2018

Theo bất đẳng thức Cauchy, ta có:

\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)

\(\Rightarrow P\ge a+b+c+6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)

\(\Leftrightarrow minP=1+1+1+6=9\)

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

29 tháng 4 2020

\(VT=3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\left(3a+\frac{2}{a}\right)+\left(3b+\frac{2}{b}\right)+\left(3c+\frac{2}{c}\right)\)

*Nháp*

Dự đoán điểm rơi tại a = b = c = 1 khi đó VT = 15

Ta dự đoán BĐT phụ có dạng \(3x+\frac{2}{x}\ge mx^2+n\)(Ta thấy hạng tử trong điều kiện đã cho ban đầu có bậc là 2 nên VP của BĐT phụ cũng có bậc 2)     (*)

Do đó ta có: \(3a+\frac{2}{a}\ge ma^2+n\);\(3b+\frac{2}{b}\ge mb^2+n\);\(3c+\frac{2}{c}\ge mc^2+n\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=15\)

\(\Rightarrow m+n=5\Rightarrow n=5-m\)

Thay n = 5 - m vào (*), ta được: \(3x+\frac{2}{x}\ge mx^2+5-m\)

\(\Leftrightarrow\frac{3x^2-5x+2}{x}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{x\left(x+1\right)}\ge m\left(x-1\right)\)

\(\Leftrightarrow m\le\frac{3x-2}{x\left(x+1\right)}\)(**)

Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{2}\Rightarrow n=\frac{9}{2}\)

Ta được BĐT phụ \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)

GIẢI:

Ta có: \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a;b;b\le\sqrt{3}\)

Ta chứng minh BĐT phụ sau: \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)(với \(0< x\le\sqrt{3}\))

\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{2x}\ge0\)(đúng với mọi \(0< x\le\sqrt{3}\))

Áp dụng, ta được: \(3a+\frac{2}{a}\ge\frac{a^2}{2}+\frac{9}{2}\);\(3b+\frac{2}{b}\ge\frac{b^2}{2}+\frac{9}{2}\);\(3c+\frac{2}{c}\ge\frac{c^2}{2}+\frac{9}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}.3=15\)

Đẳng thức xảy ra khi a = b = c = 1

16 tháng 5 2020

hình chử nhật có chu vi là 150m chiều dài hơn chiều rộng là 15m tìm tỉ số của chiều rộng và chiều dài hinh chử nhật đó

12 tháng 8 2017

Áp dụng BDT AM-GM ta có:

\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\)

\(\ge2\sqrt{\frac{c^2}{a^2}\cdot\frac{a^2}{c^2}}+2\sqrt{\frac{b^2}{a^2}\cdot\frac{a^2}{b^2}}=4\)

Sao dễ thế nhỉ ?, còn điều kiện b^2+c^2\ge a^2 nữa ko biết đúng hay sai :v

9 tháng 5 2017

Đề sai rồi b. Sửa đề đi b

14 tháng 7 2020

1/ .............. a=<b=<c=<d và a+d=b+c